何佳乐, 潘忠习, 杜谷. 激光拉曼光谱技术在地矿领域的应用与研究进展[J].中国地质调查, 2022,9(5): 111-119.
HE Jiale, PAN Zhongxi, DU Gu. Application and research progress of Laser Raman spectroscopy in geology and mineral resources[J].Geological Survey of China, 2022,9(5): 111-119.
doi: 10.19388/j.zgdzdc.2022.05.13
Application and research progress of Laser Raman spectroscopy in geology and mineral resources
HE Jiale, PAN Zhongxi, DU Gu
Chengdu Center of China Geological Survey, Sichuan Chengdu 610081, China
Abstract
Laser Raman spectroscopy is a qualitative analysis method, with the characteristics of high precision, convenience and non-destructive. And it has made progress in the field of geology and mineral resources with the continuous improvement of technology in recent years, which was mainly reflected in fluid inclusion analysis, sedimentary organic matter research and mineral component identification. In fluid inclusion analysis, the traditional qualitative analysis, such as gaussian - lorentz to volume integral peak, the parameters of the frequency shift method and CO2 Raman spectra method were set as basis, and the good linear relationships between Raman characteristic parameters of peak area and half peak and concentration, pressure, isotope were used together to analyze the pressure, salinity and isotopic. The metamorphic grade, maturity and thermal evolution degree of rock organic matter can be directly analyzed by the carbonaceous Raman thermometers in the study of sedimentary organic matter. The point-to-point and point-to-surface methods can be used conveniently and quickly to identify similar minerals and micro-minerals during identification of similar and microscopical mineral components. The latest development of laser Raman spectrum in the above aspects are reviewed and the existing achievements and the problems in the application are summarized in combination with related literature in this paper. The authors conclude that the lack of the traditional methods were offset by these new methods, and the influence of fluorescence interference and different experimental conditions on experimental convenience, reproducibility and accuracy should also be paid attention. Besides, the future development is put forward, and it is suggested that the combination of Laser Raman spectroscopy and other instruments should be used in conjunction to improve the testing efficiency, which could further expand the application scope of Raman spectroscopy in the utilization and comprehensive research of mineral resources, and provide a more efficient technical means for geological work.
Keyword:
Laser Raman spectroscopy; fluid inclusion; sedimentary organic matter; mineral component identification; research progress
叶旭, 丘志力, 陈超洋, 等. 拉曼面扫描无损鉴定矿物包裹体: 以彩虹方柱石中的磁铁矿包裹体为例[J]. , 2021, 41(7): 2105-2109. YeX, Qiu ZL, Chen CY, et al. Nondestructive identification of mineral inclusions by Raman mapping: Micro-magnetite inclusions in iridescent scapolite as example[J]. , 2021, 41(7): 2105-2109. [本文引用:4]
[2]
Coblinski JA, Inda AV, DemattêJ A M, et al. Identification of minerals in subtropical soils with different textural classes by VIS-NIR-SWIR reflectance spectroscopy[J]. , 2021, 203: 105334. [本文引用:1]
[3]
万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. , 2021, 40(1): 145-155. Wan JJ, Pan CR, YanJ, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan Uranium rare polymetallic deposit, Shaanxi Province[J]. , 2021, 40(1): 145-155. [本文引用:1]
[4]
DeonF. Electron microprobe monazite ages from a tin placer deposit on Bangka Island , Indonesia[J]. , 2021, 217: 104844. [本文引用:1]
[5]
冉敬, 郭创锋, 杜谷, 等. X射线衍射全谱拟合法分析蓝晶石的矿物含量[J]. , 2019, 38(6): 660-667. RanJ, Guo CF, DuG, et al. Quantitative analysis of mineral composition of Kyanite by X-ray diffraction with rietveld refinement method[J]. , 2019, 38(6): 660-667. [本文引用:1]
[6]
程晓琴, 李慧君, 赵振新, 等. 原位拉曼光谱在碱金属离子电池炭负极材料研究中的应用[J]. , 2021, 36(1): 93-105. Cheng XQ, Li HJ, Zhao ZX, et al. The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries[J]. , 2021, 36(1): 93-105. [本文引用:1]
[7]
Zhang SY, ChenH, Li RY, et al. Raman spectroscopy and mapping technique for the identification of expired drugs[J]. , 2020, 224: 1386-1425. [本文引用:1]
[8]
万敬伟, 崔胜峰, 陈蕾, 等. 基于拉曼光谱鉴定黑色签字笔笔迹的种类与书写时间[J]. , 2020, 40(4): 1156-1161. Wan JW, Cui SF, ChenL, et al. Identification of the types and writing time of black signature pen hand writing based on Raman spectroscopy[J]. , 2020, 40(4): 1156-1161. [本文引用:1]
[9]
Fernand o PA, NielsH, PhilippeM. High spatial resolution Raman mapping of complex mineral assemblages: Application on phosphate mineral sequences in pegmatites[J]. , 2020, 52(3): 690-708. [本文引用:2]
[10]
何佳乐, 潘忠习, 冉敬. 激光拉曼光谱法在单个流体包裹体研究中的应用进展[J]. , 2015, 34(4): 383-391. He JL, Pan ZX, RanJ. Research progress on the application of laser Raman spectroscopy in single fluid inclusions[J]. , 2015, 34(4): 383-391. [本文引用:2]
[11]
姚畅, 宋昊, 李圻, 等. 胶东焦家金矿床中黄铁矿拉曼光谱特征及其成因指示意义[J]. , 2020, 40(8): 2479-2483. YaoC, SongH, LiQ, et al. Micro Raman spectral characteristics and implication of Pyrite in the Jiaojia gold deposit, Jiaodong area, Shand ong Province, China[J]. , 2020, 40(8): 2479-2483. [本文引用:1]
[12]
鲁智云, 何雪梅, 林晨露, 等. 基于色度学-拉曼光谱特征鉴定北红和南红玛瑙[J]. , 2019, 39(7): 2153-2159. Lu ZY, He XM, Lin CL, et al. Identification of Beihong Agate and Nanhong Agate from China based on chromaticity and Raman spectra[J]. , 2019, 39(7): 2153-2159. [本文引用:2]
[13]
田野, 田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. , 2020, 35(3): 259-274. TianY, Tian YT. Fundamentals and applications of Raman spectroscopy of carbonaceous material (RSCM) thermometry[J]. , 2020, 35(3): 259-274. [本文引用:4]
[14]
Marie CC, Alexand reT, Wen JW. Raman spectra of gas mixtures in fluid inclusions: effect of quartz birefringence on composition measurement[J]. , 2020, 51(9): 1868-1873. [本文引用:1]
[15]
高晓英, 夏梅, 周善勇, 等. 矿物包裹体弹性拉曼频移温压计原理及其地质应用[J]. , 2021, 37(4): 974-984. Gao XY, XiaM, Zhou SY, et al. Principle and geological applicability of the Raman elastic geothermobarometry for mineral inclusion systems[J]. , 2021, 37(4): 974-984. [本文引用:2]
[16]
卢焕章, 范宏瑞, 倪培, 等. [M]. 北京: 科学出版社, 2004. Lu HZ, Fan HR, NiP, et al. [M]. Beijing: Science Press, 2004. [本文引用:1]
[17]
KhosraviM, Rajabzadeh MA, Mernagh TP, et al. Origin of the ore-forming fluids of the Zefreh porphyry Cu-Mo prospect, central Iran: Constraints from fluid inclusions and sulfur isotopes[J]. , 2020, 127: 103876. [本文引用:1]
[18]
GaoX, Yang LQ, YanH, et al. Ore-forming processes and mechanisms of the Hongshan skarn Cu-Mo deposit, Southwest China: Insights from mineral chemistry, fluid inclusions, and stable isotopes[J]. , 2020(4): 4-5. [本文引用:1]
[19]
Redina AA, Nikolenko AM, Doroshkevich AG, et al. Conditions for the crystallization of fluorite in the Mushgai-Khudag complex (Southern Mongolia): Evidence from trace element geochemistry and fluid inclusions[J]. , 2020, 80(4): 125666. [本文引用:1]
[20]
刘成川, 王园园, 赵爽, 等. 彭州气田雷口坡组流体包裹体特征及成藏期次[J]. , 2020, 35(6): 17-21. Liu CC, Wang YY, ZhaoS, et al. Study on fluid inclusion characteristics and Hydrocarbon accumulation periods of Leikoupo formation in Pengzhou Gasfield[J]. , 2020, 35(6): 17-21. [本文引用:1]
[21]
Burke E AJ. Raman micro-spectrometry of fluid inclusions[J]. , 2001, 55(1/2/3/4): 139-158. [本文引用:1]
[22]
Frezzotti ML, TecceF, CasagliA, et al. Raman spectroscopy for fluid inclusion analysis[J]. , 2011, 112: 1-20. [本文引用:1]
[23]
陈勇, 林承焰, 于雯泉, 等. 原位低温拉曼光谱技术在储层流体包裹体分析中的应用[J]. , 2010, 30(1): 95-97. ChenY, Lin CY, Yu WQ, et al. Application of in situ cryogenic Raman spectroscopy to analysis of fluid inclusions in reser-voirs[J]. , 2010, 30(1): 95-97. [本文引用:1]
[24]
毛毳, 陈勇, 周瑶琪, 等. NaCl-CaCl2盐水低温拉曼光谱特征及在包裹体分析中的应用[J]. , 2010, 30(12): 3258-3263. MaoC, ChenY, Zhou YQ, et al. Cryogenic Raman spectroscopic characteristics of NaCl-H2O, CaCl2-H2O and NaCl-CaCl2-H2O: Application to analysis of fluid inclusions[J]. , 2010, 30(12): 3258-3263. [本文引用:1]
[25]
杨丹, 徐文艺. NaCl-MaCl2-H2O体系低温拉曼光谱研究[J]. , 2010, 30(3): 697-701. YangD, Xu WY. Cryogenic Raman spectroscopic studies in the system of NaCl-MaCl2-H2O[J]. , 2010, 30(3): 697-701. [本文引用:1]
[26]
丁俊英, 倪培, 饶冰, 等. 显微激光拉曼光谱测定单个包裹体盐度的实验研究[J]. , 2004, 50(2): 203-209. Ding JY, NiP, RaoB, et al. Evaluation of the laser Raman microprobe method for the determination of salinity in a single fluid inclusion by using synthetic fluid inclusions[J]. , 2004, 50(2): 203-209. [本文引用:2]
[27]
Lu WJ, Chou IM, Burruss RC, et al. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts[J]. , 2007, 71(16): 3969-3978. [本文引用:2]
[28]
陈小兰, 周振柱, 韩作振, 等. 低温拉曼光谱分析流体包裹体盐度的条件约束[J]. , 2017, 37(8): 2446-2451. Chen XL, Zhou ZZ, Han ZZ, et al. The constraints on the method of using cryogenic Raman spectroscopy to determine the salinities of fluid inclusions[J]. , 2017, 37(8): 2446-2451. [本文引用:1]
[29]
王志海, 叶美芳, 董会, 等. 流体包裹体盐度低温拉曼光谱测定方法研究[J]. , 2014, 33(6): 813-821. Wang ZH, Ye MF, DongH, et al. Study on salinity determination of fluid inclusions by cryogenic Raman spectroscopy[J]. , 2014, 33(6): 813-821. [本文引用:1]
[30]
Mernagh TP, Wilde AR. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions[J]. , 1989, 53(4): 765-771. [本文引用:1]
[31]
潘君屹, 丁俊英, 倪培. Na2CO3-H2O体系人工流体包裹体中 CO32-离子的显微拉曼光谱研究[J]. , 2012, 48(3): 328-335. Pan JY, Ding JY, NiP. Raman micro-spectroscopy study of carbonate ion in synthetic fluid inclusions in system Na2CO3-H2O[J]. , 2012, 48(3): 328-335. [本文引用:1]
[32]
Wang XL, Hu WX, Chou IM. Raman spectroscopic characterization on the O-H stretching band s in NaCl- Na2CO3-Na2SO4-CO2-H2O systems: Implications for the measurement of chloride concentrations in fluid inclusions[J]. , 2013, 132: 111-119. [本文引用:1]
[33]
杨丹, 徐文艺. 常见氯盐溶液水的拉曼包络线高斯-洛仑兹去卷积分峰定量研究[J]. , 2013, 33(2): 376-382. YangD, Xu WY. Gauss-Lorentz quantitative research on O-H stretching Raman spectra of water in common chlorine salt solu-tion[J]. , 2013, 33(2): 376-382. [本文引用:1]
[34]
杨源显, 王小林, 席斌斌, 等. 应用拉曼光谱定量分析流体中硫酸盐质量摩尔浓度: 内标选择和流体组分对分析结果的影响[J]. , 2019, 48(4): 403-419. Yang YX, Wang XL, Xi BB, et al. Influences of internal stand ards and fluid composition on Raman spectroscopic determination of the molality of dissolved sulfate[J]. , 2019, 48(4): 403-419. [本文引用:1]
[35]
席斌斌, 施伟军, 蒋宏, 等. N2-CH4(CO2)混合气体在线标样制备及其拉曼定量因子测定[J]. , 2014, 33(5): 655-660. Xi BB, Shi WJ, JiangH, et al. Synthesis of N2-CH4 and N2-CO2 gas mixtures as an online stand ard and determination of their Raman quantification factors of CH4 and CO2[J]. , 2014, 33(5): 655-660. [本文引用:1]
[36]
郑海飞, 段体玉, 孙樯, 等. 一种潜在的地质压力计: 流体包裹体子矿物的激光拉曼光谱测压法[J]. , 2005, 20(7): 804-808. Zheng HF, Duan TY, SunQ, et al. A Potential geological barometer: new method to determine the pressure with daughter minerals in fluid inclusion by Raman spectroscopy[J]. , 2005, 20(7): 804-808. [本文引用:1]
[37]
Zheng HF, Qiao EW, Yang YP, et al. Determination of inner pressure for fluid inclusions by Raman spectroscopy and its application[J]. , 2011, 2(3): 403-407. [本文引用:1]
[38]
乔二伟, 段体玉, 郑海飞. 流体包裹体压力计研究之一: 高温高压下Na2SO4溶液的拉曼光谱[J]. , 2006, 26(1): 89-92. Qiao EW, Duan TY, Zheng HF. Study of pressure gauge for fluid inclusions: Raman spectroscopy of Na2SO4 solution at high temperature and high pressure[J]. , 2006, 26(1): 89-92. [本文引用:1]
[39]
乔二伟, 郑海飞, 徐备. 流体包裹体压力计研究之二: 高温高压下碳氢化合物的拉曼光谱[J]. , 2008, 24(9): 1981-1986. Qiao EW, Zheng HF, XuB. No. 2 Study of pressure barometer for fluid inclusion: Raman spectroscopy of hydrocarbon at high temperature and high pressure[J]. , 2008, 24(9): 1981-1986. [本文引用:1]
[40]
李晶, 毛世德, 郑海飞. 高温高压下NaCl-CaCl2-H2O体系Raman光谱的定量研究[J]. , 2014, 34(7): 1747-1753. LiJ, Mao SD, Zheng HF. Raman spectroscopic quantitative study of NaCl-CaCl2-H2O system at high temperatures and pres-sures[J]. , 2014, 34(7): 1747-1753. [本文引用:1]
[41]
李佳佳, 李荣西, 刘海青. 激光拉曼光谱法测定流体包裹体压力的研究进展[J]. , 2016, 52(7): 859-864. Li JJ, Li RX, Liu HQ. Research progress on determination of pressure of fluid inclusion by laser Raman spectroscopy[J]. , 2016, 52(7): 859-864. [本文引用:1]
[42]
药瑛, 孙樯. 应用于流体包裹体CO2碳同位素组成的拉曼光谱定量研究探讨[J]. , 2016, 31(10): 1032-1040. YaoY, SunQ. Raman quantitative measurements for carbon isotopic composition in CO2-rich fluid inclusion: A preliminary study[J]. , 2016, 31(10): 1032-1040. [本文引用:1]
[43]
李佳佳, 李荣西, 董会, 等. 应用显微激光拉曼光谱测定CO2气体碳同位素值δ13C的定量方法研究[J]. , 2017, 37(4): 1139-1144. Li JJ, Li RX, DongH, et al. Quantitative approach to determination of δ13C value of CO2 with micro-laser Raman spectros-copy[J]. , 2017, 37(4): 1139-1144. [本文引用:1]
[44]
阮维迪, 周征宇, DietmarS, 等. 巴基斯坦橄榄石宝石学及矿物谱学特征研究[J]. , 2021, 40(3): 593-604. Ruan WD, Zhou ZY, DietmarS, et al. A study of gemology and mineral spectroscopy characteristics of peridot from Pakistan[J]. , 2021, 40(3): 593-604. [本文引用:1]
[45]
金晓婷, 李国贵, 廖冰冰, 等. 一种云母石英质玉“草莓晶”的宝石学及振动光谱特征[J]. , 2021, 23(3): 19-28. Jin XT, Li GG, Liao BB, et al. Gemmological and vibrational spectrum characteristics of micaceous quartzose jade “Strawberry Crystal”[J]. , 2021, 23(3): 19-28. [本文引用:1]
[46]
徐速, 石小平. 含黑色草花状包裹体的南红玛瑙的宝石学特征[J]. , 2021, 23(3): 29-36. XuS, Shi XP. Mineralogical characteristic of Nanhong agate with black seaweed pattern mineral inclusion[J]. , 2021, 23(3): 29-36. [本文引用:1]
[47]
黄保有, 张波, 张进江, 等. 碳质物拉曼光谱变质温度计及其在造山带热结构重建与演化中的应用[J]. , 2020, 36(2): 526-540. Huang BY, ZhangB, Zhang JJ, et al. Carbon material Raman spectroscopy metamorphic thermometer and its application in reconstruction and evolution of orogenic belt thermal structure[J]. , 2020, 36(2): 526-540. [本文引用:2]
[48]
汪洋, 胡凯. 应用激光喇曼光谱特征参数反映有机碳质的成熟度[J]. , 2002, 22(3): 57-60. WangY, HuK. Using laser Raman spectrum parameters as in dicators of maturation for organic carbon[J]. , 2002, 22(3): 57-60. [本文引用:3]
[49]
何谋春, 吕新彪, 姚书振, 等. 沉积岩中残留有机质的拉曼光谱特征[J]. , 2005, 24(3): 67-69, 79. He MC, Lyu XB, Yao SZ, et al. Raman spectrum of residual organic matter from sedimentary rocks[J]. , 2005, 24(3): 67-69, 79. [本文引用:3]
[50]
肖贤明, 周秦, 程鹏, 等. 高-过成熟海相页岩中矿物-有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. , 2020, 50(9): 1228-1241. Xiao XM, ZhouQ, ChengP, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. , 2020, 50(9): 1228-1241. [本文引用:1]
[51]
Du JY, Geng AS, Liao ZW, et al. Potential Raman parameters to assess the thermal evolution of kerogens from different pyrolysis experiments[J]. , 2014, 107: 242-249. [本文引用:1]
[52]
BeyssacO, GofféB, ChopinC, et al. Raman spectra of carbonaceous material in metasediments: A new geothermometer[J]. , 2002, 20(9): 859-871. [本文引用:2]
[53]
刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. , 2013, 58(13): 1228-1241. Liu DH, Xiao XM, TianH, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. , 2013, 58(13): 1228-1241. [本文引用:2]
[54]
RahlJ, AndersonK, Brand onM, et al. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece[J]. , 2005, 240(2): 339-354. [本文引用:1]
[55]
KouketsuY, MizukamiT, MoriH, et al. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width[J]. , 2014, 23(1): 33-50. [本文引用:1]
[56]
AoyaM, KouketsuY, EndoS, et al. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks[J]. , 2010, 28(9): 895-914. [本文引用:1]
[57]
王民, Li ZS. 激光拉曼技术评价沉积有机质热成熟度[J]. , 2016, 37(9): 1129-1136. WangM, Li ZS. Thermal maturity evaluation of sedimentary organic matter using laser Raman spectroscopy[J]. , 2016, 37(9): 1129-1136. [本文引用:1]
[58]
何佳乐, 潘忠习, 冉敬. 激光拉曼光谱在岩矿鉴定中的应用[J]. , 2016, 36(2): 346-349. He JL, Pan ZX, RanJ. The application of laser Raman spectroscopy to rock and mineral identification[J]. , 2016, 36(2): 346-349. [本文引用:1]
[59]
吴辰泓, 姜呈馥, 王伟. 拉曼光谱地学应用及在页岩孔隙研究中的新进展[J]. , 2015(31): 30-31. Wu CH, Jiang CF, WangW. The use of Raman spectroscopy in geosciences and its advance in nano-scale porosity of shale gas reservoirs[J]. , 2015(31): 30-31. [本文引用:1]
[60]
谢超, 周本刚, 杜建国, 等. 汶川地震断裂带断层泥矿物拉曼光谱特征[J]. , 2013, 33(6): 1562-1565. XieC, Zhou BG, Du JG, et al. Characteristics of Raman spectra of minerals in gouge of the Wenchuan earthquake fault zone[J]. , ,2013, 33(6): 1562-1565. [本文引用:1]
[61]
刘景波, 叶凯. 大别山榴辉岩带片麻岩的锆石拉曼光谱研究[J]. , 2005, 21(4): 1094-1100. Li JB, YeK. Laser-Raman spectroscopic studies on zircons of gneisses from the eclogitic zone of the Dabie mountains[J]. , 2005, 21(4): 1094-1100. [本文引用:1]
徐培苍, 李如壁, 王永强, 等. [M]. 西安: 陕西科学技术出版社, 1996. Xu PC, Li RB, Wang YQ. [M]. Xi’an: Shaanxi Science and Technology Press, 1996. [本文引用:1]
[64]
何佳乐, 龚婷婷, 潘忠习, 等. 细微矿物拉曼成像分析技术与方法研究[J]. , 2021, 40(4): 491-503. He JL, Gong TT, Pan ZX, et al. Raman imaging analysis method of fine minerals in rock ore[J]. , 2021, 40(4): 491-503. [本文引用:1]
[65]
孟庆国, 刘昌岭, 李承峰, 等. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征[J]. , 2021, 40(1): 85-94. Meng QG, Liu CL, Li CF, et al. Characterization of binary hydrates containing methane by X-ray diffraction and microscopic laser Raman spectroscopy[J]. , 2021, 40(1): 85-94. [本文引用:1]
[66]
定翔, 付彦哲, 李飞, 等. 拉曼光谱仪成像定位精度检测方法[J]. , 2021, 42(10): 1271-1274. DingX, Fu YZ, LiF, et al. The method for measuring the positioning accuracy of confocal Raman microscope[J]. , 2021, 42(10): 1271-1274. [本文引用:1]