黑龙江多宝山地区裸河岩体锆石U-Pb年龄、地球化学特征及地质意义
符安宗, 李金明, 吕石佳, 石国明
黑龙江省自然资源调查院,黑龙江 哈尔滨 150036

第一作者简介: 符安宗(1986—),男,工程师,主要从事区域地质矿产调查工作。Email: 116861157@qq.com

摘要

为加深对兴蒙造山带中段中生代构造演化的认识,探讨多宝山地区侏罗纪构造岩浆演化,选取位于大兴安岭与小兴安岭结合部的裸河岩体开展岩石学、年代学和地球化学研究。结果表明: 裸河岩体主要由中细粒和细粒花岗闪长岩组成,岩体中部发育少量花岗闪长斑岩,花岗闪长岩锆石U-Pb年龄为(168.09±0.95) Ma,形成于中侏罗世中期,该期花岗闪长岩的主量元素含量具有富Na、高K、低Ti、低P的特点,微量元素含量具有低Sr、高Yb的特点,重稀土亏损,具弱负Eu异常,属于高钾钙碱性系列I型花岗岩。构造环境判别图解指示裸河岩体花岗闪长岩应属后碰撞花岗岩。结合研究区周边早侏罗世—中侏罗世侵入岩体的特征,裸河岩体形成于蒙古—鄂霍茨克洋闭合后的后碰撞构造环境。

关键词: 中侏罗世; 锆石U-Pb年龄; 地球化学特征; I型花岗岩; 裸河岩体
中图分类号:P681.7 文献标志码:A 文章编号:2095-8706(2023)01-0052-10
Zircon U-Pb ages, geochemical characteristics and geological significance of Luohe pluton in Duobaoshan area, Heilongjiang Province
FU Anzong, LI Jinming, LV Shijia, SHI Guoming
Heilongjiang Institute of Natural Resources Research, Heilongjiang Harbin 150036, China
Abstract

Petrology, geochronology and geochemistry of Luohe pluton in the connecting areas between Great Xinganling and Lesser Khingan Mountains were studied to intensify the knowledge of the tectonic evolution in the middle part of Xingmeng orogenic belt and discuss the Jurassic tectonomagmatic evolution in Duobaoshan area. The results show that Luohe pluton is mainly composed of medium fine-grained granodiorite and fine-grained granodiorite, with a small amount of granodiorite porphyry developed in the middle of the pluton. The zircon U-Pb ages of the granodiorite is (168.09 ± 0.95) Ma, indicating that it is emplaced during the Middle Jurassic. The granodiorite is characterized by high Na, high K, low Ti and low P in major elements, and low Sr and high Yb in trace elements, with depleted HREE. And weakly negative Eu anomaly is in REE distribution, which makes the granodiorite belonging to the high-K calcium alkaline series I-type granite. The Triassic and Early Jurassic sedimentary in the study area and Great Hinggan Mountains were deficient according to the discrimination diagram of tectonic setting, which means that the granodiorite of Luohe pluton belongs to the post-collision granite. Combined with the characteristics of the early-middle Jurassic intrusive rocks around the study area, the Luohe pluton is considered to be formed in the post collisional tectonic environment after the closure of Mongolia Okhotsk ocean.

Keyword: Middle Jurassic; zircon U-Pb age; geochemical characteristics; I-type granite; Luohe pluton
0 引言

黑龙江多宝山地区位于大兴安岭与小兴安岭结合部, 属兴蒙造山带东段, 自古生代以来经历了古亚洲洋、环太平洋及蒙古— 鄂霍茨克洋三大构造域的地质构造演化。古亚洲洋在东北地区于古生代晚期至中生代早期闭合[1, 2, 3], 中生代分别受到环太平洋构造体系和蒙古— 鄂霍茨克洋构造体系的叠加与改造[4, 5]。受此影响, 东北地区在中生代发生了大规模的构造-岩浆活动, 形成了大面积的中生代花岗岩, 其成岩时代及成因受到许多学者的关注[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]。研究区位于兴安地块和松嫩地块的结合带附近, 是研究兴蒙造山带中生代构造演化的关键部位之一, 但该地区的研究程度相对较低, 仅限于三矿沟矿床和小多宝山矿床。原黑龙江省第一区调队在1981年的区调工作中从裸河岩体获得了3个K-Ar年龄, 分别为217 Ma、182 Ma 和109.9 Ma[20]。本文在多宝山地区1∶ 5万区域地质调查工作的基础上, 围绕黑龙江多宝山地区裸河岩体开展了岩石学、年代学和地球化学工作, 探讨其岩石成因和构造环境, 以期为兴蒙造山带中生代构造演化研究提供依据。

1 地质概况

研究区位于黑龙江省嫩江市多宝山地区, 以中生代岩浆活动为主, 并在多宝山铜矿、铜山铜矿一带小面积发育中奥陶世花岗闪长岩和花岗闪长斑岩(图1)[21, 22]。中生代花岗岩除中侏罗世花岗闪长岩外, 还发育中三叠世— 晚三叠世花岗闪长岩。本区出露大面积的古生代地层, 由老到新依次为: 下/中奥陶统铜山组(O1-2t)、多宝山组(O1-2d)、上奥陶统裸河组(O3l)、爱辉组(O3a)、下志留统黄花沟组(S1h)、中志留统八十里小河组(S2b)、上志留统卧都河组(S3w)、上志留统— 中泥盆统泥鳅河组(S4D2n)、中/上泥盆统根里河组(D2-3g), 为海相沉积地层或海相火山岩地层[23]

图1 中国东北地区构造简图(左)[21, 22]和多宝山地区地质简图(右)
F1.塔源— 喜桂图断裂; F2.贺根山— 黑河断裂; F3.西拉沐沧— 长春断裂; F4.赤峰— 开源断裂; F5.嘉荫— 牡丹江断裂; F6.伊通— 依兰断裂; F7.敦化— 密山断裂
Fig.1 Tectonic sketch of Northeastern China(left)[21, 22] and geological sketch of Duobaoshan area (right)

裸河岩体呈近椭圆状岩株产出, 出露面积约62 km2, 侵位于志留系— 泥盆系及中三叠世— 晚三叠世花岗闪长岩中, 岩体主要由中细粒和细粒花岗闪长岩组成, 岩体中部发育少量花岗闪长斑岩。与岩体接触的志留系— 泥盆系因岩浆热液的侵位发生热接触变质作用, 普遍发育角岩和角岩化岩石。岩体内部中细粒花岗闪长岩和细粒花岗闪长岩为涌动式侵入接触关系, 接触界线不明显。花岗闪长斑岩呈脉状产出, 侵入中细粒和细粒花岗闪长岩。

中细粒花岗闪长岩中局部可见少量闪长质暗色微粒包体(图2(a))。包体呈椭圆状, 短轴长5~15 cm, 灰黑色, 微晶— 细粒结构。包体与母岩之间接触接线清晰, 未见明显的冷凝边和烘烤边。

图2 裸河岩体花岗闪长岩手标本及显微照片
Pl.斜长石; Kf.钾长石; Q.石英; Bt.黑云母; Hb.角闪石
Fig.2 Hand specimen and micrograph photos of the granodiorite in Luohe pluton

花岗闪长岩呈灰白色, 中细粒或细粒花岗结构, 块状构造。岩石矿物成分由斜长石(约50%)、钾长石(约15%)、石英(约25%)、黑云母(约8%)和少量角闪石(约2%)组成, 粒径0.1~2.5 mm(图2(b))。斜长石呈半自形粒状或柱状, 发育聚片双晶和环带结构, 晶面中心或环带边缘发育绢云母化、泥化等, 为更中长石; 钾长石呈它形粒状, 发育泥化; 石英呈它形粒状, 无色, 可见波状消光; 黑云母呈片状, 褐色; 角闪石呈柱状, 横切面为菱形, 多色性明显, 具角闪式解理。副矿物主要为磷灰石、榍石和磁铁矿(图2(c))。

2 分析方法

本文测试了1件样品的LA-ICP-MS锆石U-Pb年龄, 分析了4件样品的岩石地球化学成分, 采样位置见图1。锆石分选由河北省区域地质矿产调查研究所实验室完成, 挑选晶形较完好、透明度较好、包体和裂纹较少的锆石用于年龄测定。锆石制靶、阴极发光(CL)图像的采集和U-Pb同位素分析在中国地质调查局天津地质调查中心完成, 仪器激光剥蚀的斑束直径为35 μ m。实验原理、测试方法及数据处理方法见参考文献[24, 25, 26]。锆石定年外标使用GJ-1标准锆石, 使用208Pb校正法对普通铅进行校正, 利用NIST-SRM-612玻璃标样作为外标计算锆石样品的Pb、U、Th含量。

样品的岩石地球化学测试由黑龙江省地质矿产测试应用研究所完成。选择不含岩脉和包体的新鲜岩石采样, 破碎、研磨至200目以下, 开展地球化学分析。主量元素采用X射线荧光光谱仪完成, 其中FeO分析采用重铬酸钾容量法, 仪器型号为PW2400/40型, 测试精度优于5%。微量元素和稀土元素采用电感耦合等离子体质谱法测定, 仪器型号为X SeriesⅡ 型, 测试精度优于10%, 具体分析流程见参考文献[27]。

3 测试结果
3.1 LA-ICP-MS锆石U-Pb年龄

分析测试结果见表1。花岗闪长岩样品的锆石结晶程度较好, 阴极发光图像(图3)显示锆石为自形— 半自形晶体, 以短柱状、等轴状为主, 直径 70~140 μ m, 可见明显的岩浆韵律环带结构, 且锆石Th/U值均大于0.4, 具典型岩浆成因锆石的特征[28]。23个测点的分析结果位于U-Pb谐和线上及其附近(图4), 206Pb/238U年龄为171~164 Ma, 206Pb/238U加权平均年龄为(168.09± 0.95) Ma, 为该花岗闪长岩的岩浆结晶年龄。

表1 裸河岩体花岗闪长岩LA-ICP-MS锆石U-Pb测年结果 Tab.1 LA-ICP-MS zircon U-Pb ages of the granodiorite in Luohe pluton

图3 裸河岩体花岗闪长岩锆石阴极发光图像Fig.3 Zircon CL images of the granodiorite in Luohe pluton

图4 裸河岩体花岗闪长岩锆石U-Pb年龄谐和图(左)和加权平均年龄(右)Fig.4 U-Pb concordia diagram (left) and weighted average age (right) of the granodiorite in Luohe pluton

3.2 岩石地球化学特征

裸河岩体花岗闪长岩样品的地球化学分析结果见表2。样品全碱含量较高, 具有富Na、高K的特点。4件样品在A/CNK-A/NK图解上落入准铝质区域, 在SiO2-K2O图解上均落在高钾钙碱性系列区(图5), 指示裸河岩体花岗闪长岩为准铝质高钾钙碱性系列岩石。

表2 裸河岩体花岗闪长岩主量元素、稀土元素与微量元素分析结果及特征值 Tab.2 Data table of major elements, REE and trace elements of the granodiorite in Luohe pluton

图5 裸河岩体花岗闪长岩A/CNK-A/NK图解(左)[29]和SiO2-K2O图解(右)[30]Fig.5 A/CNK-A/NK (left)[29] and SiO2-K2O (right)[30] diagram of the granodiorite in Luohe pluton

样品中的稀土元素具有弱负Eu异常, 在稀土元素配分曲线(图6)上, 配分曲线整体表现出右倾型曲线特点, 为轻稀土富集型, 轻稀土分馏明显, 重稀土较平坦、分馏相对不显著。

图6 裸河岩体花岗闪长岩球粒陨石标准化稀土元素配分曲线(左)和原始地幔标准化微量元素蛛网图(右)[31]Fig.6 Chondrite-normalized REE patterns (left) and primitive mantle-normalized trace element patterns (right)[31] for the granodiorite in Luohe pluton

微量元素蛛网图(图6)显示, 样品的大离子亲石元素Rb、Ba、K 和元素性质活泼的不相容元素U、Th明显富集; 高场强元素Nb、Ta、P、Ti明显亏损。

4 讨论
4.1 岩石成因

裸河岩体花岗闪长岩中的矿物组合为石英+斜长石+钾长石+黑云母+角闪石, 副矿物主要为磷灰石、榍石和磁铁矿, 具I型花岗岩特征[32, 33]; 岩石中Th、Y含量与Rb含量成正比(图7(a), (b)), 显示出I型花岗岩的变化趋势[33]。在K2O-Na2O图解(图7(c))中, 样品也落入 I 型花岗岩区域, 因此裸河岩体花岗闪长岩为I型花岗岩。壳源岩浆的Rb/Sr值大于0.5[34], 原始地幔的Rb/Sr值为0.03[31]。而裸河岩体花岗闪长岩的Rb/Sr值为0.18~0.30, 介于壳源岩浆和原始地幔的Rb/Sr值之间, 说明其岩浆源区可能为下地壳, 同时受到了地幔物质不同程度的混染。此外, 裸河岩体花岗闪长岩的Nb/Ta为10.25~12.54(平均值10.97), 与原始地幔(Nb/Ta=17.8)[35]相差较大, 与地壳(Nb/Ta=11.4)[36]较为接近。微量元素蛛网图(图6)上Nb、Ta、P、Ti的贫化也指示了源岩为地壳物质, 而中等的Mg#值则反映可能有地幔物质的参与(表2)。此外, 裸河岩体中细粒花岗闪长岩中闪长质暗色微粒包体的矿物粒度明显小于母岩, 说明暗色微粒包体不是源区的残留体[37, 38], 且包体形态呈椭圆状, 其边部未见烘烤现象, 明显区别于围岩捕虏体, 可能是镁铁质岩浆注入长英质岩浆塑性状态下的液滴[39, 40], 为岩浆混合作用的产物。因此, 裸河岩体花岗闪长岩的岩浆来源应该是下地壳部分熔融物质与幔源物质的混合。

图7 裸河岩体花岗闪长岩Rb-Th(a)[33]、Rb-Y(b)[33]和K2O-Na2O(c)[41]判别图解Fig.7 Discrimination diagrams of Rb-Th(a)[33]、Rb-Y(b)[33]and K2O-Na2O(c)[41]for the granodiorite in Luohe pluton

4.2 构造环境分析

样品在R1-R2构造环境判别图解[42](图8(a))中落入碰撞后抬升和造山晚期区域, 反映裸河岩体花岗闪长岩应形成于由挤压向伸展转换的构造环境。在(Y+Nb)-Rb图解(图8(b))和(Yb+Ta)-Rb图解[43, 44](图8(c))上, 样品处于火山弧和后碰撞花岗岩区。样品在张旗等[45]绘制的Yb-Sr图解(图8(d))中落入低Sr高Yb型花岗岩区, 其形成的压力通常小于1 GPa, 反映裸河岩体形成于低压环境。后碰撞阶段相当于造山带演化的晚造山阶段[46], 产生于构造体制转换时期[47], 结合构造环境判别图解, 本文认为裸河岩体形成于后碰撞构造环境。研究区及整个大兴安岭地区普遍缺失三叠纪和早侏罗世沉积[48, 49], 说明三叠纪— 早侏罗世为北方造山带的隆升造山时期, 与中侏罗世的裸河岩体形成于后碰撞环境相符。

图8 裸河岩体花岗闪长岩构造环境判别图解Fig.8 Discrimination diagrams of tectonic setting for the granodiorite in Luohe pluton

研究区北部大金山地区早侏罗世花岗闪长岩年龄为(183.2± 1) Ma, 具埃达克岩特征, 形成于活动大陆边缘环境[14]; 西北部三矿沟和小多宝山花岗闪长岩的年龄为177~175.9 Ma, 具岛弧岩浆岩特征, 形成于活动大陆边缘[17, 18, 20]; 南部霍龙门地区二长花岗岩年龄为(175.2± 2.2) Ma, 东南部孙吴地区白云母花岗岩年龄为(168± 1) Ma, 二者具同碰撞— 造山后特征, 与陆-陆碰撞作用有关[12, 50]; 裸河岩体花岗闪长岩年龄为(168.09± 0.95) Ma, 具后碰撞花岗岩特征, 可见研究区及周边地区在早侏罗世中晚期(183.2~175.9 Ma)处于洋壳俯冲的活动大陆边缘环境, 在早侏罗世晚期(175.2± 2.2) Ma至中侏罗世中期(168± 1) Ma 处于大洋闭合后的陆-陆碰撞环境, 之后转变为后碰撞环境。这是一个造山带演化的连续过程, 由俯冲相关的挤压作用逐渐转变为同碰撞-后碰撞的伸展作用, 可能受到蒙古— 鄂霍茨克洋闭合的影响。

5 结论

(1)多宝山地区裸河岩体花岗闪长岩的锆石U-Pb测年结果为(168.09± 0.95) Ma, 表明裸河岩体花岗闪长岩的侵位年龄为中侏罗世中期。

(2)地球化学特征显示, 裸河岩体花岗闪长岩主量元素含量具有富Na、高K、低Ti、低P的特点, 微量元素含量具低Sr、高Yb的特点, 重稀土亏损, 具弱负Eu异常, 属于高钾钙碱性系列I型花岗岩, 为下地壳部分熔融的产物。

(3)多宝山地区裸河岩体花岗闪长岩为后碰撞花岗岩, 形成于蒙古— 鄂霍茨克洋闭合后的后碰撞构造环境。

(责任编辑: 魏昊明)

参考文献
[1] 孙德有, 吴福元, 张艳斌, . 西拉木伦河—长春—延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报: 地球科学版, 2004, 34(2): 174-181.
Sun D Y, Wu F Y, Zhang Y B, et al. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone——evidence from the Dayushan granitic pluton, Jilin Province[J]. J Jilin Univ: Earth Sci Ed, 2004, 34(2): 174-181. [本文引用:]
[2] 李锦轶, 高立明, 孙桂华, . 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 2007, 23(3): 565-582.
Li J Y, Gao L M, Sun G H, et al. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates[J]. Acta Petrol Sin, 2007, 23(3): 565-582. [本文引用:]
[3] Cao H H, Xu W L, Pei F P, et al. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block[J]. Lithos, 2013, 170-171: 191-207. [本文引用:]
[4] 许文良, 王枫, 裴福萍, . 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353.
Xu W L, Wang F, Pei F P, et al. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrol Sin, 2013, 29(2): 339-353. [本文引用:]
[5] 孟凡超, 刘嘉麒, 崔岩, . 中国东北地区中生代构造体制的转变: 来自火山岩时空分布与岩石组合的制约[J]. 岩石学报, 2014, 30(12): 3569-3586.
Meng F C, Liu J Q, Cui Y, et al. Mesozoic tectonic regimes transition in the Northeast China: Constriants from temporal-spatial distribution and associations of volcanic rocks[J]. Acta Petrol Sin, 2014, 30(12): 3569-3586. [本文引用:]
[6] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phane-rozoic granitoids in northeastern China[J]. J Asian Earth Sci, 2011, 41(1): 1-30. [本文引用:]
[7] 隋振民, 葛文春, 吴福元, . 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J]. 岩石学报, 2007, 23(2): 461-480.
Sui Z M, Ge W C, Wu F Y, et al. Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan-Mts[J]. Acta Petrol Sin, 2007, 23(2): 461-480. [本文引用:]
[8] 邵济安, 张履桥, 牟保磊. 大兴安岭中生代伸展造山过程中的岩浆作用[J]. 地学前缘, 1999, 6(4): 339-346.
Shao J A, Zhang L Q, Mu B L. Magmatism in the mesozoic extending orogenic process of Da Hinggan MTS[J]. Earth Sci Front, 1999, 6(4): 339-346. [本文引用:]
[9] 林强, 葛文春, 吴福元, . 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 2004, 20(3): 403-412.
Lin Q, Ge W C, Wu F Y, et al. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrol Sin, 2004, 20(3): 403-412. [本文引用:]
[10] 李仰春, 张克信, 吴淦国, . 大一小兴安岭接合部早—中侏罗世侵入岩SHRIMP锆石U-Pb定年及成因[J]. 地质通报, 2013, 32(5): 717-729.
Li Y C, Zhang K X, Wu G G, et al. Zircon U-Pb ages and causes of the Early-Middle Jurassic granites in the Da-Xiao Xinganling Copula[J]. Geological Bulletin of China, 2013, 32(5): 717-729. [本文引用:]
[11] 刘翠, 邓晋福, 许立权, . 大兴安岭—小兴安岭地区中生代岩浆-构造-钼成矿地质事件序列的初步框架[J]. 地学前缘, 2011, 18(3): 166-178.
Liu C, Deng J F, Xu L Q, et al. A preliminary frame of magma-tectonic-Mo metallogenic events of Mesozoic Era in Da Hinggan Mountains and Xiao Hinggan Mountains areas[J]. Earth Sci Front, 2011, 18(3): 166-178. [本文引用:]
[12] 徐文喜, 李成禄. 大兴安岭东北部霍龙门地区中侏罗世花岗岩-锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质与资源, 2018, 27(6): 522-530.
Xu W X, Li C L. Middle Jurassic granites in Huolongmen area, Northeastern Daxinganling Mountains: Zircon U-Pb Age, geochemistry and tectonic implications[J]. Geol Res, 2018, 27(6): 522-530. [本文引用:]
[13] 尹志刚, 李敏, 李文龙, . 大兴安岭中北段大金山地区早侏罗世埃达克质花岗闪长岩的成因及构造环境[J]. 矿物岩石地球化学通报, 2019, 38(1): 69-79.
Yin Z G, Li M, Li W L, et al. The origin and tectonic environment of the early Jurassic Adakitic Granodiorite in the Dajinshan area of the Central and Northern Da Hinggan Range[J]. Bull Mineral Petrol Geochem, 2019, 38(1): 69-79. [本文引用:]
[14] 佘宏全, 李进文, 向安平, . 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 2012, 28(2): 571-594.
She H Q, Li J W, Xiang A P, et al. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrol Sin, 2012, 28(2): 571-594. [本文引用:]
[15] 施璐, 郑常青, 唐振, . 大兴安岭中部早中侏罗世花岗岩成因及构造背景[J]. 地质论评, 2017, 63(S1): 309-310.
Shi L, Zheng C Q, Tang Z, et al. Genesis and tectonic significance of the early-middle Jurassic Granitoids in the central great Xing'an Range[J]. Geol Rev, 2017, 63(S1): 309-310. [本文引用:]
[16] 褚少雄, 刘建明, 徐九华, . 黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义[J]. 岩石学报, 2012, 28(2): 433-450.
Chu S X, Liu J M, Xu J H, et al. Zircon U-Pb dating, petrogenesis and tectonic significance of the granodiorite in the Sankuanggou skarn Fe-Cu deposit, Heilongjiang Province[J]. Acta Petrol Sin, 2012, 28(2): 433-450. [本文引用:]
[17] Deng K, Li Q G, Chen Y J, et al. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China: Petrogenesis and geodynamic implications[J]. Lithos, 2018, 296-299: 113-128. [本文引用:]
[18] Chu S X, Zeng Q D, Liu J M, et al. Early-Middle Jurassic magmatism and skarn-porphyry mineralization in NE China: Geochronological and geochemical constraints from the Sankuanggou skarn Fe-Cu-(Mo) deposit, and tectonic implications[J]. J Geochem Explor, 2019, 200: 84-103. [本文引用:]
[19] 杨贺, 马万里, 蔡文艳, . 黑龙江小多宝山矽卡岩型Fe-Cu矿床成矿时代及构造背景——来自岩石地球化学、锆石年代学及Hf同位素证据[J]. 岩石学报, 2020, 36(3): 856-870.
Yang H, Ma W L, Cai W Y, et al. Metallogenic epoch and tectonic setting of the Xiaoduobaoshan Fe-Cu deposit in Heilongjiang Province, China: Evidence from petrogeochemistry, zircon U-Pb geochronology and Hf isotopic compositions[J]. Acta Petrol Sin, 2020, 36(3): 856-870. [本文引用:]
[20] 黑龙江省地质局第一区调队. 多宝山铜矿幅、工人村幅(部分)1∶5万区域地质调查报告[R]. 1981.
The First Regional Geological Survey Team of Heilongjiang Geological Bureau. 1∶50 000 Regional Geological Survey Report of Duobaoshan Copper Ore Sheet and Gongrencun Sheet (part)[R]. 1981. [本文引用:]
[21] 潘桂棠, 肖庆辉, 陆松年. 中国大地构造单元划分[J]. 中国地质, 2009, 36(01): 1-28.
Pan G T, Xiao Q H, Lu S N, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(01): 1-28. [本文引用:]
[22] 符安宗, 杨文鹏, 刘渊, . 大兴安岭中段碾子山地区晚三叠世埃达克质侵入岩的发现及其地质意义[J]. 现代地质, 2022, 36(01): 266-281.
Fu A Z, Yang W P, Liu Y, et al. Discovery of Late Triassic Adakitic Rocks at Nianzishan in the Central Great Xing'an Range and Its Geological Significance[J]. Geoscience, 2022, 36(01): 266-281. [本文引用:]
[23] 赵焕利, 刘旭光, 刘海洋, . 黑龙江多宝山古生代海盆闭合的岩石学证据[J]. 世界地质, 2011, 30(1): 18-27.
Zhao H L, Liu X G, Liu H Y, et al. Petrological evidence of Paleozoic marine basin closure in Duobaoshan of Heilongjiang[J]. Glob Geol, 2011, 30(1): 18-27. [本文引用:]
[24] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chem Geol, 2004, 211(1/2): 47-69. [本文引用:]
[25] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chin Sci Bull, 2010, 55(15): 1535-1546. [本文引用:]
[26] Ludwig K R. ISOPLOT 3. 0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003. [本文引用:]
[27] Liang Q, Jing H, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3): 507-513. [本文引用:]
[28] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. J Metamorph Geol, 2000, 18(4): 423-439. [本文引用:]
[29] Maniar P D, Piccoli P M. Tectonic discrimination of grani-toids[J]. GSA Bull, 1989, 101(5): 635-643. [本文引用:]
[30] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib Mineral Petrol, 1976, 58(1): 63-81. [本文引用:]
[31] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and proce-sses[J]. Geo Soc London Special Pub, 1989, 42(1): 313-345. [本文引用:]
[32] 马鸿文. 花岗岩成因类型的判别分析[J]. 岩石学报, 1992, 8(4): 341-350.
Ma H W. Discrimination of genetic types of granitoid rocks[J]. Acta Petrol Sin, 1992, 8(4): 341-350. [本文引用:]
[33] Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. [本文引用:]
[34] Tischendorf G, Paelchen W. Zur Klassifikation von Granitoid-en[J]. Z Geol Wiss, 1985, 13(5): 615-627. [本文引用:]
[35] McDonough W F, Sun S S. The composition of the Earth[J]. Chem Geol, 1995, 120(3/4): 223-253. [本文引用:]
[36] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Carlton: Blackwell Scientific Publication, 1985. [本文引用:]
[37] Chappell B W, White A J R. I- and S-type granites in the Lachlan Fold Belt[J]. Earth Environ Sci Trans Roy Soc Edinburgh, 1992, 83(1/2): 1-26. [本文引用:]
[38] White R V, Tarney J, Kerr A C, et al. Modification of an oceanic plateau, Aruba, Dutch Caribbean: Implications for the generation of continental crust[J]. Lithos, 1999, 46(1): 43-68. [本文引用:]
[39] Wiebe R A, Jellinek M, Markley M J, et al. Steep schlieren and associated enclaves in the Vinalhaven granite, Maine: possible indicators for granite rheology[J]. Contrib Mineral Petrol, 2007, 153(2): 121-138. [本文引用:]
[40] Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts[J]. Lithos, 2005, 80(2/3): 155-177. [本文引用:]
[41] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contrib Mineral Petrol, 1982, 80(2): 189-200. [本文引用:]
[42] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chem Geol, 1985, 48(2/3): 43-55. [本文引用:]
[43] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J Petrol, 1984, 25(4): 956-983. [本文引用:]
[44] Pearce J. Sources and settings of granitic rocks[J]. Episodes, 1996, 19(4): 120-125. [本文引用:]
[45] 张旗, 王元龙, 金惟俊, . 造山前、造山和造山后花岗岩的识别[J]. 地质通报, 2008, 27(1): 1-18.
Zhang Q, Wang Y L, Jin W J, et al. Criteria for the recognition of pre-, syn-and post-orogenic granitic rocks[J]. Geol Bull China, 2008, 27(1): 1-18. [本文引用:]
[46] 韩宝福. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 2007, 14(3): 64-72.
Han B F. Diverse post-collisional granitoids and their tectonic setting discrimination[J]. Earth Sci Front, 2007, 14(3): 64-72. [本文引用:]
[47] 肖庆辉, 邓晋福, 马大铨, . 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002.
Xiao Q H, Deng J F, Ma D Q, et al. The Ways of Investigation on Granitoids[M]. Beijing: Geological Publishing House, 2002. [本文引用:]
[48] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京: 地质出版社, 1993.
Bureau of Geology and Mineral Resources of Heilongjiang Pro-vince. Regional Geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 1993. [本文引用:]
[49] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1993.
Bureau of Geology and Mineral Resources of Nei Mongol (Inner Mongolia) Autonomous Region. Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region[M]. Beijing: Geological Publishing House, 1993. [本文引用:]
[50] 李宇, 丁磊磊, 许文良, . 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古——鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 2015, 31(1): 56-66.
Li Y, Ding L L, Xu W L, et al. Geochronology and geochemistry of muscovite granite in Sunwu area, NE China: Implications for the timing of closure of the Mongol-Okhotsk Ocean[J]. Acta Petrol Sin, 2015, 31(1): 56-66. [本文引用:]