持久性有机污染物环境地球化学调查研究进展与展望
马嘉宝1, 刘斯文1, 魏吉鑫1,2, 黄毅1, 马晨格1,3
1.国家地质实验测试中心, 北京 100037
2.中国地质大学(北京), 北京 100083
3.中国地质大学(武汉), 湖北 武汉 430074
通讯作者简介: 刘斯文(1980—),男,副研究员,主要从事生态地球化学和健康地质调查研究等方面工作。Email:siwenliu@126.com

第一作者简介: 马嘉宝(1997—),男,硕士研究生,主要从事环境科学、健康地质调查研究等方面工作。Email: shy3312567@126.com

摘要

持久性有机污染物(pervistent organic pollatants, POPs)环境地球化学调查是分析掌握POPs化学性质、迁移转化、环境归趋的重要手段。基于文献对近年来POPs的环境地球化学调查研究进展进行了综述,总结出以下3个方面的结论: ①POPs普遍具有环境难降解、长距离迁移性、生物蓄积性和高生物毒性等特征,POPs浓度数据在世界各地不同环境中介质中被广泛报道,随着历史累积和持续释放,POPs已经成为危害生态系统、人类健康的重要风险,已有调查监测数据显示,当前我国部分水、土检测样品POPs浓度水平较高; ②POPs可在大气-水体-沉积物或者大气-土壤等不同环境界面中相互迁移,进而污染地下水并迁徙到地表系统的每个角落,这种迁移转化与POPs成分及环境介质的物理化学性质、温度、pH值等因素密切相关; ③当前,我国相关机构对大气、水体、土壤和底泥等环境介质中的部分POPs类型缺少连续系统的调查监测,难以对POPs污染状况、长周期变化规律进行系统分析研究。建议今后应当加强大气-土壤-水界面长周期动态监测工作,进一步完善POPs的监测、分析方法标准方法,并开展系统的环境地球化学综合分析研究,为实施环境污染防治和生态修复提供理论和实践支撑。

关键词: POPs; 环境地球化学; 调查监测; 界面环境迁移; 污染防治
中图分类号:P632 文献标志码:A 文章编号:2095-8706(2023)03-0117-14
Research progress and prospect of environmental geochemical investigation of persistent organic pollutants
MA Jiabao1, LIU Siwen1, WEI Jixin1,2, HUANG Yi1, MA Chenge1,3
1. National Research Center for Geoanalysis, Beijing 100037, China
2. China University of Geosciences (Beijing), Beijing 100083,China
3. China University of Geosciences (Wuhan), Hubei Wuhan 430074,China
Abstract

The environmental geochemical survey of persistent organic pollutants (POPs) is an important mean to study and master its chemical properties, migration, transformation and environmental fate. Three inclusions were summarized based on the research progress of environmental geochemical investigation and research of POPs in recent years. ① POPs generally have characteristic of environmental refractory, long-distance migration, bioaccumulation and high biological toxicity, and the concentration data of POPs have been widely reported in different environmental media around the world. The POPs have become an important risk that endangers ecosystems and human health, with the historical accumulation and continuous release. According to the existing survey and monitoring data, the concentration levels of POPs from test samples of partial water bodies and soil are currently high in China. ② POPs can migrate among different environmental interfaces such as atmosphere-water-sediment or atmosphere-soil, then it can contaminate ground water and migrate to every corner of the surface system. This migration and transformation are closely related to the composition of POPs and the physical and chemical properties, temperature, pH and other factors of the environmental medium. ③ there is a short of continuous and systematic investigation and monitoring about some types of POPs in environmental media such as the atmosphere, water bodies, sediment, and soil, the relevant institutions in China, which results in difficult systematic analysis and research on the pollution levels and long-term changes of POPs. It is suggested that the long-term dynamic monitoring of the atmosphere soil water interface should be strengthened and the monitoring and analysis methods, standards and methods of POPs should be improved. The systematic environmental geochemical comprehensive analysis and research also should be carried out to provide theoretical and practical support for the implementation of environmental pollution prevention and ecological restoration.

Keyword: POPs; environmental geochemistry; monitoring and survey; interface environment migration; pollution prevention
0 引言

近年来, 经济快速增长、能源消耗、工业化和城市化带来持久性有机污染物(persistent organic pollutants, POPs)的广泛生产和利用, 给环境、生态系统和人类健康带来严重影响[1]。目前, 全球已有120多个国家签署了《斯德哥摩尔公约》, 共有29种POPs列入禁用化学物质名录。受污染管控、生态修复的理论和实践需求, 近年来POPs环境地球化学调查研究日益受到重视, 逐渐成为地质科学、环境科学、生态学等众多学科交叉的研究热点, 其研究方向与进展主要体现在以下4个方面。①POPs环境地球化学特性研究。POPs的环境行为、生物富集、暴露水平与健康风险持续受到关注, POPs的环境持久性、远距离迁移性、生物累积性等特征逐渐得到广泛证实, 有力推动了POPs相关化学品的全球监管。②POPs污染状况的调查监测。随着《GB/T 14848— 2017地下水质量标准》[2]、《GB 3838— 2002地表水环境质量标准》[3]、《GB 15618— 2018土壤环境质量农用地土壤污染风险管控标准》[4]、《DZ/T 0288— 2015区域地下水污染调查评价规范》[5]等多个标准规范的颁布实施, 三氯苯、四氯苯、苯并芘等POPs污染物被先后纳入调查监测范围, 短链氯化石蜡、全氟辛烷磺酸等新型POPs的调查监测也逐渐得到重视, 针对POPs排放集中区、南北极和青藏高原环境敏感区、重要生态功能区中多种环境介质(水、空气、土壤、沉积物、食物、生物样品等)中的大量POPs浓度数据被广泛报道。③POPs 的地球化学迁移转化研究。在POPs调查监测基础上, 研究总结了不同种类POPs在水、土、气中的分布规律以及不同界面之间的迁移转化规律。④气候变化背景下POPs在区域或全球范围内的迁移循环研究蓬勃发展。该领域2004年前鲜有报告, 近10 a 来取得重要进展。特别是针对南北极、青藏高原等地区的洋流、季风、冰川等研究表明, 气候变化在直接或者间接地影响着POPs的排放、传输、储存、分布、降解和最终归宿。本文重点围绕POPs的污染情况、环境地球化学行为、迁移转化规律等进行综述, 以期为后续的POPs调查监测、生态修复工作提供基础资料。

1 POPs环境地球化学性质

POPs化学结构复杂, 同类物和异构体有数千种, 其中许多都是特定系列或家族的成员, 其源头主要来自杀虫剂使用、工业排放、垃圾焚烧、生活排放等途径[6]。主要包括: 有机氯农药(organochlorine pesticide, OCPs), 如六六六(hexachlorocyclohexane, HCHs)、滴滴涕(dichlorodiphenyltrichloroethane, DDTs)等; 多环芳烃(polycyclic aromatic hydrocarbons, PAHs), 包含萘、蒽、菲、芘等150余种化合物; 多氯联苯(polychlorinated biphenyls, PCBs), 根据氯原子取代数和取代位置不同, 共有209种同系物; 多溴联苯醚(polybrominated diphenyl ethers, PBDEs), 包括5、8、10溴联苯醚等同系物亦超过200种; 全氟化合物(per-and polyfluoroalkyl substances, PFASs), 包含全氟辛烷磺酸(perfluorooctane sulphonate, PFOS)、全氟辛烷羧酸(perfluorooctanoic acid, PFOA)等; 此外, 还包括氯化石蜡、二恶英、氯酚等有机化合物。虽然POPs结构复杂、种类繁多, 但具有非常鲜明的环境地球化学特征。

1.1 难消解性和环境持久性

POPs在化学组成上富含氯、溴、氟等卤族元素, 化学键能大, 热稳定性强, 在自然环境中具有很强的抗生物降解、抗光解、抗水解和抗化学分解作用。POPs在大气中半衰期约为数天, 但在水体、土壤、水下沉积物中半衰期可达数十年以上[7]。对照2008年欧洲化学品管理署《化学品注册、评估、授权与限制》法规(附件7)[8]规定的半衰期标准(表1), 大多数POPs可纳入持久性和高持久性范围。根据赋存环境介质不同, POPs半衰期也有差异, 如PAHs在水中半衰期为7~60 d, 在水下沉积物中半衰期为8个月至6年。异狄氏剂(C12H8C16O)在土壤中的半衰期为4~8 a, 七氯(C10H5C17)在土壤中的半衰期为 0.11~5.5 a[6, 7]。PFOA在有氧无氧状况下均有极强的抗生物降解、抗水解和抗光解的特性, 在水中光化学的半衰期达到256 a[9]。由于POPs降解缓慢, 即使所有新来源立即被消除, 它们仍将在自然环境中存在很长时间。

表1 持久性和高持久性判别标准[8] Tab.1 Persistence and high persistence criteria[8]
1.2 半挥发性和长距离迁移性

大多数POPs具有较强挥发性, 在环境温度下POPs能够从土壤、水体和植被挥发到空气中, 以气相或者与大气中悬浮颗粒物、气溶胶结合, 通过全球蒸馏效应和蚱蜢效应, 在温度较低或适宜的环境介质表面发生吸附和沉降, 其挥发、冷凝、沉降的顺序可以经常重复, 使其在全球湖泊、海洋、大气及其气溶胶、土壤、水体沉积物、冰雪、地下、地表水以及生物体中广泛分布, 并以此为迁移介质在局部、区域甚至全球范围内长距离迁移转化[10, 11], 污染偏远地区的生态环境。例如, 自20世纪70年代以来, 虽然HCHs、DDTs、PCBs等化学品已经被禁止或严格管制, 但近年来南北极地区POPs大量“ 气、水、土、生” 监测研究证实[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], 在从未使用过POPs或者远离人类活动的地区的各类环境介质中依然不同程度检出POPs(表2)。

表2 南北极地区部分环境介质POPs浓度水平[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] Tab.2 Concentration level of POPs in environmental media in polar regions[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
1.3 生物蓄积性和高生物毒性

典型POPs中, 只有α 、β 、γ -HCH异构体、PFOS、PFOA等少数污染物具有较高水溶性[24]。绝大多数POPs具有疏水和亲油脂的特性, 在自然生态系统中, 其倾向于分配并吸附或储存在生物脂肪、有机质沉积物及其他有机质颗粒物中[7, 24]。抗降解作用、新陈代谢和亲脂性的综合作用, 驱动POPs不断在食物链中集聚, 其浓度会随着食物链的延长而逐级升高, 使得位于食物链顶端的高级生物体内的POPs浓度比周围环境介质的浓度提高多个数量级[25]。通常是某几种或某几族POPs相互作用, 最终对生态系统和身体健康造成极大危害(图1)。

图1 持久性有机污染物在环境中的流通和生物链累积Fig.1 Transport and biochain accumulation of POPs in the environment

近年来国内外学者对生物体内POPs浓度水平及生理毒性进行了大量监测和试验研究, 研究发现POPs在世界各地不同等级、不同种类、不同生存环境中的动植物体内器官、脂肪、血液中普遍分布, 并与环境浓度明显正相关。中国湖泊生物体内Σ HCHs含量为0.50~3 405.67 ng/g, 16种优先控制的PAHs总含量为289.00~17 877.26 ng/g[26]。范夏瑞等[27]通过提取过去30 a发表文献中的数据, 估算了我国POPs在食物中的暴露水平: DDTs (1.4~27.1ng/g)、HCHs(1.8~29.3 ng/g)、PBDEs (0.046~2.82 ng/g)、PCBs(0.05~7.57 ng/g)、PFOA(0.02~0.97 ng/g)、PFOS(0.000 82~2.76 ng/g)。数据分析表明, DDTs、HCHs、PBDEs、PCBs等大部分传统 POPs 的环境暴露水平呈现下降趋势, 然而其它类型 POPs下降并不明显, 存在较高程度的健康风险[27]。全球六大洲母乳样品中也都检测出POPs(图2)[28], 俄罗斯远东母乳样本中POPs浓度水平(HCHs+DDTs+PCBs)范围为23~878 ng/g(平均151.4 ng/g)[29]。越来越多证据表明, POPs不仅具有致癌、致畸、致突变性, 而且具有内分泌干扰作用, 对生殖系统、免疫系统、神经系统等产生毒性, 损伤皮肤和内脏器官。

图2 全球六大洲的母乳样本中的有机污染物平均水平[28]Fig.2 Average levels of organic pollutants in human milk samples from six continents in the world[28]

2 POPs在水体中分布及环境地球化学过程

POPs主要通过工农业直接排放、地表径流、雨水冲刷、大气干湿沉降等途径释放到水体, 并在空气— 水体— 水下沉积物间发生迁移转化, 具有复杂的环境地球化学过程。

2.1 水体中POPs的分布情况

我国对POPs监测始于20世纪80年代, 前期以OCPs为主, 后期逐步拓展到PCBs、PAHs、PFASs等新型污染物。调查发现, 部分水体的POPs污染浓度水平值得高度关注(表3)。

表3 国内部分水体POPs浓度水平[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] Tab.3 POPs concentration level in some domestic water bodies[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]

OCPs作为《斯德哥尔摩公约》首批禁用的12种(其中8种为OCPs)持久性有机污染物, 目前以HCHs、DDTs的检出率最高。从已发表的文献数据上看, 欧美国家流域水体中OCPs浓度一般在几至几百ng/L[42]。我国流域水体HCHs和DDTs的质量浓度分别⫹5 000 ng/L、1 000 ng/L。统计发现, 中国境内17个省市区49个湖泊水体Σ HCH4(α 、β 、γ 、δ -HCH)浓度范围为0.25~195 ng/L, DDTs及其降解物(dichloro-diphengl-dichloroethane, DDD)、(dichloro-diphengl-dichloroe thylene, DDE)的平均浓度分别为(12.8± 23.5) ng/L(n=30)和(12.8± 24.6) ng/L(n=24)[43]。受近年来我国禁用及限制使用OCPs和自然降解影响, 其浓度范围呈逐渐下降趋势, 如1995年白洋淀水体中Σ OCPs浓度检出量为3 050 ng/L, 2008年检出量为13.21 ng/L, 2016年检出量在2.62~6.13 ng/L之间[33, 44]。但非洲、印度等发展中国家部分流域水体污染水平依然较高, 如非洲尼日尔河Σ OCPs样本浓度水平为(1 138.0± 246.7) ng/L[45], 可能与这些发展中国家禁用或限制OCPs类农药时间较晚有关。

PAHs的脂溶分配系数大, 易于与有机质结合, 水下有机质沉积物为其主要汇区, 但各类水体中PAHs依然不同程度检出, 浓度一般在ug/L级以下。《地表水环境质量标准(GB 3838— 2002)》[3]将PAHs中的苯并芘纳入特定检测项目, 但未明确PAHs总指标。截止2019年2月公开数据, 中国26个湖泊水体Σ PAH16平均浓度水平为(360.0± 433.8) ng/L(n=26)[43]。个别水体PAHs检出浓度处于中高水平, 如辽河流域水体中Σ PAHs浓度水平为 94.78~2 931.62 ng/L[36]。长江武汉段水源地Σ PAHs浓度水平为57. 04~475.79 ng/L, 其中苯并芘浓度水平为1.49~15.28 ng/L[37], 高于《地表水环境质量标准(GB 3838— 2002)》[3]规定的2.8 ng/L限值。

PCBs在水体中一般以低氯取代的单体溶解态为主, 而高氯取代的 PCBs更易分配到水下沉积物中。根据已报道文献数据, 国内水体Σ PCBs的检出范围在Nd(检出限)~1 355.30 ng/L[46], 大部分水体浓度监测值在几至几十ng/L之间, 其中26个湖库水体浓度范围为(0.19± 0.12)~(23.1± 22.2)ng/L[43]。对照《地表水环境质量标准(GB 3838— 2002)》[3]中PCBs的限制值(20 ng/L), 部分水体PCBs检测样品浓度存在超标现象, 如长江武汉段饮用水水源PCBs浓度水平为Nd~77.49 ng/L[37]

PFASs目前已经成为一种新型、最难降解的全球性有机污染物之一, PFAS中以PFOS和PFOA的检出率最高, 一般地表水可达到ng/L水平。这两类化合物兼具亲水基团和疏水结构, 既易溶于水又容易在生物体内累积富集[24]。自2004年以来, 我国一直是PFASs的最大生产、排放国。相比较而言, 国外地表水 PFOA浓度普遍较低, 而我国不同地区地表水PFOA 污染程度差异明显, 部分地区污染水平较高, 如辽河、太湖、钱塘江杭州段及渤海湾等部分水体 PFOS、PFOA浓度水平均大于100 ng/L[47], 上海市地表水Σ PFASs最大含量为362.37 ng/L[48], 辽河PFASs污染浓度可达781 ng/L[49], 远高于我国其他水域, 可能与我国东部氟化工业发展水平高有关。

2.2 水体中POPs的分配规律

水体中绝大多数POPs的溶解态浓度非常低, 主要受正辛醇-水分配系数(lgKow)控制。lgKow的数值一般随着POPs 苯环数量、分子量增加而增大, lgKow的数值越大, POPs的疏水性和亲脂性越强, 在水中溶解浓度就越小[30]。吸附态POPs主要吸附于悬浮有机质颗粒物(含小型藻类、浮游动物活体及残体)中, 吸附态POPs比溶解态的POPs随水介质的迁移性更强, 且更不容易被生物降解或者光解, 更容易造成POPs的富集与污染。特别指出的是, 水体中粒径小于0.45 μ m且溶于水的溶解性有机质(dissolved organic matter, DOM), 可通过配位、螯合等作用与POPs结合, 并显著增加POPs水溶性, 提升POPs伴随环境介质的迁移能力[50, 51, 52]。水下沉积物是POPs环境迁移转化的主要归宿, 水中吸附态POPs会随着颗粒物沉降, 最终分配到底部有机质沉积物中并被不同程度检出(表4), 特别是高环数PAHs、高溴代的PBDEs等更容易在水下沉积物中累积, 导致沉积物中的 POPs 浓度通常要比上覆水体中的浓度高几个, 甚至十几个数量级[63]

表4 国内部分水体水下沉积物的浓度水平[32, 36, 37, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62] Tab.4 POPs concentration level of underwater sediments in some domestic water bodies[32, 36, 37, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]

调查发现, 我国水域水下沉积物POPs部分样本检测浓度较高, 如珠江三角洲和南海北部海域水下表层沉积物样品的PBDEs含量为12.7~7 361 ng/g, 已经成为目前世界上已报道沉积物中含量较高的区域之一[64]。POPs在水下沉积物中的累积与沉积物化学成分及其结构形态、温度、pH值等因素密切相关。一般来讲, 沉积颗粒物的粒径越小, 其有机质含量越高, 吸附 POPs 的能力越强, 而POPs的浓度就大, 在水体中的解吸能力就越弱, 也就越不利于POPs的迁移和转化[65, 66]

2.3 大气-水体-沉积物界面的POPs的迁移转化

POPs可以在大气-水体-沉积物不同界面之间迁移, 水体中POPs以蒸发方式进入大气, 大气中POPs也可通过干湿沉降作用再次释放到水体[67], 其平衡过程与大气、POPs化学组分及物理环境相关。水体生物可通过生物吸收、吸附和捕食等途径, 形成生物富集效应, 并显著降低水中溶解态POPs浓度[68]。生物体对POPs的富集效应与其营养级、脂肪含量、年龄和食物链长度呈正相关, 但并非完全一致[25, 51, 65]。当水体发生富营养化时, 浮游生物的生长率和生物量会大大增加, 而浮游生物的生物富集效应可消耗水中POPs, 导致其在水体中溶解态浓度降低[65], 当超过一定浓度标准时, 就会打破 POPs在水-气界面的平衡状态, 促进POPs 从大气向水体转移[69]。反之, 当大气中POPs浓度降低时, 水体向大气再挥发出POPs的可能性也会大大增加[70]。随着POPs排放的减少, 水-气交换方向可转为挥发或者平衡。如20世纪80年代以来, 随着OCPs在全球范围内长期禁用或者严格使用, OCPs的海(水)— 气交换方向已经发生倒转, 由大气干湿沉降为主逐渐转变为水体向大气的二次释放[71]

水-沉积物界面是POPs地球化学循环的重要区域(图3)。水下沉积物则既是POPs的归宿, 也是水体POPs污染的重要内源。温度升高时, 水下沉积物中的 POPs 的释放作用明显增强, 使得水体中溶解态POPs浓度升高。POPs还可通过沉积物的再悬浮进入水体中, 造成水体中吸附态POPs浓度呈量级增加, 形成水体的POPs“ 二次污染” [24], 因而对水体沉积物中的POPs监测更为关键。例如, 当湖泊在秋季分层结束时, 沉积物中的 POPs 会随着颗粒物的再悬浮再次进入水体中, 颗粒再悬浮作用可造成水体中 POPs 沉降通量会比大气沉降通量高 1~2 个数量级[72]。风浪、潮汐、灌溉、拖网等作用导致水动力作用增强, 或者在底栖生物扰动的情况下, 也可以显著改变沉积物-水界面的POPs吸附和解吸过程, 从而导致水下沉积物中的POPs向水体迁移。研究显示, 大型底栖动物促使挪威奥斯陆陆港沉积物中的PAHs、PCBs和DDTs等污染物分别以每天243 pmol/m2、19.6 pmol/m2和13.6 pmol/m2的速度向水体释放[73]。通过交换模型研究安徽太湖水体和沉积物中发现, HCHs 迁移方向是由沉积物到水体, 历史沉积物释放已成为太湖水体中HCHs主要来源[74]。同时, 水溶性较高的PFOS、PFOA、低氯代PCBs以及与DOM呈吸附或结合态的POPs, 更容易通过渗流区、土壤间隙水渗透向深层迁移, 成为深层土壤和地下水的潜在污染源[24, 52, 75]

图3 POPs在不同环境介质间的地球化学迁移转化行为Fig.3 Geochemical migration and transformation of POPs in different environmental media

3 POPs在土壤中分布及环境地球化学过程

土壤是一个由固-液-气组成, 介质松弛, 物理化学性质相对稳定的复杂系统, 是POPs在陆地生态环境系统重要的富集场所, 通过经历一系列吸附、解吸和迁移转化过程, 可能引发生态污染风险。

3.1 土壤中POPs的分布

世界各国土壤中均不同程度存在POPs。土壤中的POPs可通过喷洒农药、施用化肥、工业废气与废水排放、大气干湿沉降、雨水冲刷、地表径流等途径进入土壤[76]。POPs在土壤中的浓度, 一般与当地工业化和城市化程度密切相关, 人类活动和时间累积同样发挥着重要作用。DDTs和 HCHs是土壤中最普遍的OCPs有机污染物, 欧美、东亚等地球随着OCPs禁用和降解时间的延长, 总体上未达到污染水平或属于低污染水平[77], 而非洲少数地区农地土壤污染风险较高, 如加纳中部某农场OCPs浓度为2 100~15 500 ng/g[78]

我国PCBs在土壤中的空间分布或残留浓度与PCBs产品的使用密切相关, 其中高氯代 PCBs 通常呈现典型点位污染且在点位土壤中含量明显高于低氯代同系物[79]。近年来, PAHs在全国范围内土壤污染越来越普遍, 并呈现出从城市工业带到农村土壤扩散的态势。统计2000— 2020年公开发表166篇文献发现, 我国表层土壤PAHs含量中位值为675.70 ng/g, 其含量峰值出现在表层或亚表层(0~40 cm), 部分城区或工业区附近污染较为严重[80]。如我国西安市区居民区土壤中 PAHs平均值高达50.06 μ g/g, 是PAHs致癌浓度的两倍[81]。PBDEs是世界产量最大的溴系阻燃剂, 土壤中沉积物中绝大多数为BDE-209、BDE-153、BDE-183等化合物单体[82], 一般在土壤中的分布浓度随离工业区距离增加而减小, 大多数污染地区土壤中以高溴代的PBDEs为主, 偏远地区土壤中则以挥发性较强的低溴代PBDEs为主[83]。土壤中全氟化合物以PFOA、PFOS 检出率最高, 其他新型POPs污染物也不断被检出[84]

土壤对POPs固存作用主要通过有机质分配, 土壤间孔隙水溶解, 矿物颗粒的表面点位吸附等方式实现, 与土壤粒度、有机碳含量、温度、pH值等因素紧密相关, 不同种类或者相同种类但分子量不同的POPs的吸附作用也存在明显差异[75]。通常土壤粒度越小, 有机质含量越高, 土壤对POPs的吸附作用越强, 使得POPs的抵淋虑、抗降解能力也就越强, 越不易解吸和迁移[85, 86]。当土壤颗粒物的粒径一致时, 土壤中POPs浓度与土壤有机质含量总体呈正相关[87]。pH值影响土壤矿物颗粒表面电荷、POPs的沉淀溶解、微生物活性, 一般说来, PH值越低, 土壤对POPs的吸附能力越强[88]。土壤中氧气和光照有限, POPs有氧微生物降解特别是光解作用较弱, 厌氧还原脱卤是土壤中POPs降解的最重要形式[89], 但迄今为止尚未发现能够有效降解PFASs的微生物[90]。实际情况下, POPs需要依赖多个微生物的协同代谢才能完成。

3.2 空气-土壤界面的POPs的迁移转化

土壤是POPs的“ 源” 与“ 汇” 。土壤中POPs通过挥发作用进入大气, 大气中POPs也可通过干湿沉降作用进入土壤, 并沿土层纵向迁移[91], 进而污染深部土壤及地下水(图3)。以PAHs为例, 通常浅层土壤高环数POPs占比高, 随深度增加POPs含量及高环数占比逐步降低[92]

陆地植物也在POPs循环中扮演重要角色, 在有机碳含量高的陆生林草系统, 极易将大气中亲脂性POPs吸附截留, 而植被凋落物又会将植被体内和表面吸附的 POPs 迁移至森林土壤, 在土壤物化性质、土壤表层覆盖物、微生物活动、雨水淋虑等因素影响下, 使得POPs固存在土壤中或向深部迁移[93]

在土— 气交换方面, 通常POPs中的低氯代PCBs、低溴代PBDEs、低环数PAHs更容易挥发进入大气[94, 95]。传统理论认为, 挥发性强的HCHs等POPs倾向于通过降雨降雪沉降至地表, 挥发性差的十溴二苯醚(BDE-209)等主要吸附存在大气悬浮颗粒物上并进行长距离大气迁移。最新研究证实, 即使挥发性极低的POPs也可通过气态迁移, 并成为污染物累积的重要来源[83]。在POPs全球迁移方面, 受全球分馏和冷凝作用的影响, POPs存在由低纬度向高纬度定向迁移富集的趋势, POPs也可以沿海拔高度发生分馏冷凝, 使得地球南北极、青藏高原成为POPs的重要“ 汇区[96, 97, 98]” 。有研究发现, 我国夏季东南季风可将东南区POPs污染物输送到东北汇区[99]。青藏高原南部和北部的 POPs则分别来自南亚和欧洲的输入[100], 高原南部大气中DDTs的含量明显高于北部, 印度季风及其降水是 DDTs 输入青藏高原的动力。

温度被认为是影响POPs大气浓度、沉降-挥发过程以及二次污染排放的首要因素。一般来讲, 温度上升会提升土壤中POPs的挥发性。“ 全球蒸馏效应” 模型证实, 气温每升高1 ℃, POPs挥发性就会增加10%~15%[101]。气候变化可能会加强持久性有机污染物从水、土壤和冰川中的再排放过程。长期监测发现, 虽然全球POPs排放逐渐减少, 但北美洲五大湖地区六氯苯和HCHs的大气浓度依然持续升高, 根本原因是温度升高驱动了两种污染物从土壤、水体中的二次挥发释放[102]。北极地区监测发现, OCPs、PCBs等污染物也表现出冬季最小值和夏季最大值的季节性变化, 重要原因是夏季温度升高加速海冰消融会使得已沉积POPs污染物重新释放进入大气[71]

4 挑战和展望

POPs可发生局部、区域和全球尺度的迁移、转化和循环, 具有复杂的环境地球化学过程, 其科学调查研究难度与深度以及污染的严重性、复杂性和长期性远远超过常规污染物。中国作为经济快速增长的发展中国家和化学品生产消耗大国, POPs所引起的环境污染和健康风险比其他国家更为复杂。同时针对部分污染物的监测能力还十分有限, 缺乏明确的标准监测手段。推进生态文明建设, 必须深化POPs调查监测和环境地球化学研究, 为评估环境与健康风险, 实施环境污染防治和生态修复, 推动健康中国建设提供支撑服务。

(1)统筹开展POPs监测工作。结合实际需要, 在土壤地球化学调查、环境地质调查、水资源调查(地下水监测)、健康地质调查等工作中有针对性地开展相关POPs调查监测工作, 将更多POPs及同系物纳入调查监测范围, 同时加强大气-土壤-水界面一体化联合监测, 开展长周期动态监测工作。

(2)建立和完善统一规范的POPs标准化监测、分析方法。加强POPs在不同环境介质中的主被动采样技术研究发, 满足长期监测、数据分析和变化趋势研究需要。

(3)深化POPs环境地球化学综合研究。加强POPs在不同环境界面迁移转化行为、区域污染迁移过程、POPs与重金属复合效应以及重要工业区和农业区POPs生态污染修复工作。

(4)加强生态、自然资源、农业农村等机构相关POPs调查监测数据共享和集成整合, 形成调查研究合力。

(责任编辑: 刘丹, 王晗)

参考文献
[1] Bakirtas T, Akpolat A G. The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries[J]. Energy, 2018, 147: 110-121. [本文引用:1]
[2] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 14848—2017 地下水质量标准[S]. 北京: 中国标准出版社, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Stand ardization Administration of the People’s Republic of China. GB/T 14848—2017 Stand ard for Groundwater Quality[S]. Beijing: Stand ards Press of China, 2017. [本文引用:1]
[3] 国家环境保护总局, 国家质量监督检验检疫总局. GB 3838—2002 地表水环境质量标准[S]. 北京: 中国环境科学出版社, 2002.
State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB 3838—2002 Environmental Quality Stand ards for Surface Water[S]. Beijing: China Environmental Press, 2002. [本文引用:4]
[4] 生态环境部, 国家市场监督管理总局. GB 15618—2018 土壤环境质量农用地土壤污染风险管控标准(试行)[S]. 北京: 环境科学出版社, 2019.
Ministry of Ecology and Environment, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB 15618—2018 Soil Environmental Quality Risk Control Stand ard for Soil Contamination of Agricultural Land [S]. Beijing: China Environmental Press, 2019. [本文引用:1]
[5] 中华人民共和国国土资源部. DZ/T 0288—2015 区域地下水污染调查评价规范[S]. 北京: 中国标准出版社, 2015.
Ministry of Land and Resources of the People’s Republic of China. DZ/T 0288—2015 Specification for Regional Groundwater Contamination Investigation and Evaluation[S]. Beijing: Stand ards Press of China, 2015. [本文引用:1]
[6] Ashraf M A. Persistent organic pollutants (POPs): a global issue, a global challenge[J]. Environmental Science and Pollution Research, 2017, 24(5): 4223-4227. [本文引用:2]
[7] Nguyen V H, Smith S M, Wantala K, et al. Photocatalytic remediation of persistent organic pollutants (POPs): a review[J]. Arabian Journal of Chemistry, 2020, 13(11): 8309-8337. [本文引用:3]
[8] Berger U, Ost N, Sättler D, et al. Assessment of persistence, mobility and toxicity (PMT) of 167 REACH Registered Substances[M]. German Environment Agency(UBA), 2018: 1-60. [本文引用:1]
[9] Vaalgamaa S, Vähätalo A V, Perkola N, et al. Photochemical reactivity of perfluorooctanoic acid (PFOA) in conditions representing surface water[J]. Science of the Total Environment, 2011, 409(16): 3043-3048. [本文引用:1]
[10] Beyer A, Mackay D, Matthies M, et al. Assessing long-range transport potential of persistent organic pollutants[J]. Environmental Science & Technology, 2000, 34(4): 699-703. [本文引用:1]
[11] Alharbi O M L, Basheer A A, Khattab R A, et al. Health and environmental effects of persistent organic pollutants. Journal of Molecular Liquids, 2018, 263: 442-453. [本文引用:1]
[12] Baek S Y, Choi S D, Chang Y S. Three-year atmospheric monitoring of organochlorine pesticides and polychlorinated biphenyls in polar regions and the South Pacific[J]. Environmental Science & Technology, 2011, 45(10): 4475-4482. [本文引用:1]
[13] Ma Y X, Adelman D A, Bauerfeind E, et al. Concentrations and water mass transport of legacy POPs in the Arctic Ocean[J]. Geophysical Research Letters, 2018, 45(23): 12972-12981. [本文引用:1]
[14] 张荣秋, 董纯明, 盛华芳, . 白令海和楚科奇海表层沉积物中多环芳烃降解微生物多样性[J]. 海洋学报, 2014, 36(4): 52-61.
Zhang R Q, Dong C M, Sheng H F, et al. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from surficial sediments of the Bering Sea and Chukchi Sea in the Arcti[J]. Acta Oceanologica Sinica, 2014, 36(4): 52-61. [本文引用:1]
[15] Tomy G T, Budakowski W, Halldorson T, et al. Fluorinated organic compounds in an eastern Arctic marine food web[J]. Environmental Science & Technology, 2004, 38(24): 6475-6481. [本文引用:1]
[16] Cabrerizo A, Galbán-Malagón C, Del Vento S, et al. Sources and fate of polycyclic aromatic hydrocarbons in the Antarctic and Southern Ocean atmosphere[J]. Global Biogeochemical Cycles, 2014, 28(12): 1424-1436. [本文引用:1]
[17] Cao S K, Na G S, Li R J, et al. Fate and deposition of polycyclic aromatic hydrocarbons in the Bransfield Strait, Antarctica[J]. Marine Pollution Bulletin, 2018, 137: 533-541. [本文引用:1]
[18] Curtosi A, Pelletier E, Vodopivez C L, et al. Distribution of PAHs in the water column, sediments and biota of Potter Cove, South Shetland Island s, Antarctica[J]. Antarctic Science, 2009, 21(4): 329-339. [本文引用:1]
[19] 叶新荣, 陈立红, 张荣保, . 气相色谱法分析南极贼鸥粪土层中的多氯联苯和有机氯农药[J]. 环境化学, 2013, 32(9): 1805-1806.
Ye X R, Chen L H, Zhang R B, et al. Analysis of polychlorinated biphenyls and organochlorine pesticides in antarctic skua feces by gas chromatography[J]. Environmental Chemistry, 2013, 32(9): 1805-1806. [本文引用:1]
[20] Strobel A, Schmid P, Burkhardt-Holm P, et al. Persistent organic pollutants in red- and white-blooded High-Antarctic notothenioid fish from the remote Weddell Sea[J]. Chemosphere, 2018, 193: 213-222. [本文引用:1]
[21] Krahn M M, Pitman R L, Burrows D G, et al. Use of chemical tracers to assess diet and persistent organic pollutants in Antarctic type C killer whales[J]. Marine Mammal Science, 2008, 24(3): 643-663. [本文引用:1]
[22] Nicolas P, Begoña J, Jose L R, et al. First evidence of legacy chlorinated POPs bioaccumulation in Antarctic sponges from the Ross sea and the South Shetland Island s[J]. Environmental pollution, 2023, 329: 1-9. [本文引用:1]
[23] Galbán-Malagón C J, Del Vento S, Berrojalbiz N, et al. Polychlorinated biphenyls, hexachlorocyclohexanes and hexachlorobenzene in seawater and phytoplankton from the southern ocean (Weddell, South Scotia, and Bellingshausen Seas)[J]. Environmental Science & Technology, 2013, 47(11): 5578-5587. [本文引用:1]
[24] 张干, 李军, 田崇国, . 持久性有机污染物的地球化学[M]. 北京: 科学出版社, 2019: 11-14.
Zhang G, Li J, Tian C G, et al. Environmental Geochemistry of Persistent Organic Pollutants[M]. Beijing: Science Press, 2019: 11-14. [本文引用:5]
[25] Poma G, Cuykx M, Amato E, et al. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption[J]. Food and Chemical Toxicology, 2017, 100: 70-79. [本文引用:2]
[26] 刘东红, 陶玉强, 周文佐. 持久性有机污染物在中国湖泊生物中分布与富集的研究进展[J]. 湖泊科学, 2018, 30(3): 581-596.
Liu D H, Tao Y Q, Zhou W Z. Distribution and accumulation of persistent organic pollutants in aquatic organisms of Chinese lakes[J]. Journal of Lake Sciences, 2018, 30(3): 581-596. [本文引用:1]
[27] 范夏瑞, 王紫薇, 李垚, . 我国持久性有机污染物质的暴露及健康风险[C]//中国毒理学会环境与生态毒理学专业委员会第七届学术研讨会议论文摘要集. 贵阳: 中国毒理学会, 2021: 34.
Fan X R, Wang Z W, Li Y, et al. Exposure and Health Risks of Persistent Organic Pollutants in China[C]//Proceedings of the 7th Academic Seminar of the Professional Committee of Environmental and Ecotoxicology. Guiyang: Chinese Society of Toxicology, 2021: 34. [本文引用:2]
[28] Krätschmer K, Malisch R, Vetter W. Chlorinated paraffin levels in relation to other persistent organic pollutants found in pooled human milk samples from primiparous mothers in 53 countries[J]. Environmental Health Perspectives, 2021, 129(8): 087004. [本文引用:1]
[29] Tsygankov V Y, Gumovskaya Y P, Gumovskiy A N, et al. Bioaccumulation of POPs in human breast milk from south of the Russian Far East and exposure risk to breastfed infants[J]. Environmental Science and Pollution Research, 2020, 27(6): 5951-5957. [本文引用:1]
[30] 王芹, 张秋丰, 胡跃城, . 渤海湾持久性有机污染物的分布特征及来源解析[J]. 海洋环境科学, 2013, 32(2): 271-275.
Wang Q, Zhang Q F, Hu Y C, et al. Distribution and sources of persistent organic pollutants in Bohai Bay[J]. Marine Environmental Science, 2013, 32(2): 271-275. [本文引用:1]
[31] 胡晴晖. 湄洲湾水体中持久性有机污染物的污染特征与风险评估[J]. 中国环境科学, 2014, 34(10): 2536-2544.
Hu Q H. Occurrence and ecological risk assessment of persistent organic pollutants in Meizhou Bay[J]. China Environmental Science, 2014, 34(10): 2536-2544. [本文引用:1]
[32] 龚雄虎, 丁琪琪, 金苗, . 升金湖水体优先污染物筛选与风险评价[J]. 环境科学, 2021, 42(10): 4727-4738.
Gong X H, Ding Q Q, Jin M, et al. Screening of priority pollutants and risk assessment for surface water from Shengjin Lake[J]. Environmental Science, 2021, 42(10): 4727-4738. [本文引用:1]
[33] 高秋生, 焦立新, 杨柳, . 白洋淀典型持久性有机污染物污染特征与风险评估[J]. 环境科学, 2018, 39(4): 1616-1627.
Gao Q S, Jiao L X, Yang L, et al. Occurrence and ecological risk assessment of typical persistent organic pollutants in Baiyangdian Lake[J]. Environmental Science, 2018, 39(4): 1616-1627. [本文引用:1]
[34] 刘少颖, 黄希汇, 胡柯君, . 钱塘江水体和鱼体内农药类持久性有机污染物残留水平及积累特征分析[J]. 中国卫生检验杂志, 2020, 30(11): 1284-1288.
Liu S Y, Huang X H, Hu K J, et al. Analysis of the residual levels and accumulation characteristics of pesticide persistent organic pollutants in water and fish in the Qiantang River[J]. Chinese Journal of Health Laboratory Technology, 2020, 30(11): 1284-1288. [本文引用:1]
[35] 谷先坤. 多环芳烃和有机氯农药在巢湖的赋存及其生物积累放大效应研究[D]. 南京: 中国科学院南京地理与湖泊研究所, 2017.
Gu X K. Study on the Occurrence and Bioaccumulation Amplification Effect of Polycyclic Aromatic Hydrocarbons and Organochlorine Pesticides in Chaohu Lake[D]. Nanjing: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2017. [本文引用:1]
[36] 单德鑫, 刘璐瑶, 樊洪瑞, . 辽河流域水体中持久性有机物污染特征分析[J]. 合肥学院学报: 综合版, 2018, 35(2): 31-37.
Shan D X, Liu L Y, Fan H R, et al. Analysis on characteristics of persistent organic pollutants in Liaohe River Basin[J]. Journal of Hefei University (Comprehensive Edition), 2018, 35(2): 31-37. [本文引用:1]
[37] 张坤锋, 付青, 涂响, . 武汉典型饮用水水源中典型POPs污染特征与健康风险评估[J]. 环境科学, 2021, 42(12): 5836-5847.
Zhang K F, Fu Q, Tu X, et al. Pollution characteristics and risk assessment of typical POPs in typical drinking water sources in Wuhan[J]. Environmental Science, 2021, 42(12): 5836-5847. [本文引用:2]
[38] 周涛, 韩彬, 徐亚岩, . 南中国海海水中有机氯农药和多氯联苯的含量及分布特征[J]. 岩矿测试, 2014, 33(1): 90-95.
Zhou T, Han B, Xu Y Y, et al. Concentrations and distribution characteristics of organochlorine pesticides and polychlorinated biphenyls in seawaters of the South Sea[J]. Rock and Mineral Analysis, 2014, 33(1): 90-95. [本文引用:1]
[39] Wang C L, Zou X Q, Zhao Y F, et al. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the water and suspended sediments from the middle and lower reaches of the Yangtze River, China[J]. Environmental Science and Pollution Research, 2016, 23(17): 17158-17170. [本文引用:1]
[40] 任亚军. 扬州城区水体和表层底泥中3类持久性有机污染物时空分布及风险评价[D]. 扬州: 扬州大学, 2018.
Ren Y J. Temporal and Spatial Distribution and Risk Assessment of Three Pollutants in Water and Surface Sediments of Yangzhou Urban Area[D]. Yangzhou: Yangzhou University, 2018. [本文引用:1]
[41] 王乙震, 周绪申, 林超, . 南运河生态修复水体有机污染物的污染特征[J]. 环境化学, 2016, 35(2): 383-392.
Wang Y Z, Zhou X S, Lin C, et al. Pollution characteristics of organic pollutants in the ecologically restored water of South Canal[J]. Environmental Chemistry, 2016, 35(2): 383-392. [本文引用:1]
[42] 员晓燕, 杨玉义, 李庆孝, . 中国淡水环境中典型持久性有机污染物(POPs)的污染现状与分布特征[J]. 环境化学, 2013, 32(11): 2072-2081.
Yuan X Y, Yang Y Y, Li Q X, et al. Present situation and distribution characteristics of persistent organic pollutants in freshwater in China[J]. Environmental Chemistry, 2013, 32(11): 2072-2081. [本文引用:1]
[43] 陶玉强, 赵睿涵. 持久性有机污染物在中国湖库水体中的污染现状及分布特征[J]. 湖泊科学, 2020, 32(2): 309-324.
Tao Y Q, Zhao R H. Occurrence and distribution of persistent organic pollutants in water of Chinese lakes and reservoirs[J]. Journal of Lake Sciences, 2020, 32(2): 309-324. [本文引用:3]
[44] Dai G H, Liu X H, Liang G, et al. Distribution of organochlorine pesticides (OCPs) and poly chlorinated biphenyls (PCBs) in surface water and sediments from Baiyangdian Lake in North China[J]. Journal of Environmental Sciences, 2011, 23(10): 1640-1649. [本文引用:1]
[45] Unyimadu J P, Osibanjo O, Babayemi J O. Selected persistent organic pollutants (POPs) in water of River Niger: occurrence and distribution[J]. Environmental Monitoring and Assessment, 2018, 190(1): 6. [本文引用:1]
[46] 穆希岩, 黄瑛, 李学锋, . 我国水体中持久性有机污染物的分布及其对鱼类的风险综述[J]. 农药学学报, 2016, 18(1): 12-27.
Mu X Y, Huang Y, Li X F, et al. The occurrence of persistent organic pollutants in China and their environmental risk to fish: a review[J]. Chinese Journal of Pesticide Science, 2016, 18(1): 12-27. [本文引用:1]
[47] 吕雪艳, 孙媛媛, 于志国, . 全氟辛酸在沉积物-水界面污染及吸附迁移行为研究进展[J]. 应用生态学报, 2021, 32(11): 4147-4155.
Lyu X Y, Sun Y Y, Yu Z G, et al. Research progress on the pollution, adsorption, and transport of perfluorooctanoic acid (PFOA) at the sediment-water interface[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4147-4155. [本文引用:1]
[48] Sun R, Wu M H, Tang L, et al. Perfluorinated compounds in surface waters of Shanghai, China: source analysis and risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95. [本文引用:1]
[49] Chen X W, Zhu L Y, Pan X Y, et al. Isomeric specific partitioning behaviors of perfluoroalkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China[J]. Water Research, 2015, 80: 235-244. [本文引用:1]
[50] Huang M, Li Z W, Huang B, et al. Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses[J]. Journal of Hazardous Materials, 2018, 344: 539-548. [本文引用:1]
[51] 任东, 杨小霞, 马晓冬, . DOM结构特征及其对17β-雌二醇光降解的影响[J]. 中国环境科学, 2015, 35(5): 1375-1383.
Ren D, Yang X X, Ma X D, et al. Structural characteristics of DOM and its effects on the photodegradation of 17β-estradiol[J]. China Environmental Science, 2015, 35(5): 1375-1383. [本文引用:2]
[52] 谢冰心, 王姝, 孙辉, . 溶解性有机质对持久性有机污染物环境行为的影响研究进展[J]. 环境污染与防治, 2020, 42(12): 1563-1568.
Xie B X, Wang S, Sun H, et al. Impacts of dissolved organic matter on the environmental behavior of persistent organic pollutants: a review[J]. Environmental Pollution & Control, 2020, 42(12): 1563-1568. [本文引用:2]
[53] 许妍, 陈佳枫, 徐磊, . 白洋淀表层沉积物中有机氯农药和全多氯联苯的分布特征及风险评估[J]. 湖泊科学, 2020, 32(3): 654-664.
Xu Y, Chen J F, Xu L, et al. Distribution and risk assessment of organochlorine pesticides and polychlorinated biphenyls in surficial sediments from Lake Baiyangdian[J]. Journal of Lake Sciences, 2020, 32(3): 654-664. [本文引用:1]
[54] 李慧, 李捷, 宋鹏, . 东北小兴凯湖沉积物POPs污染特征及生态风险评价[J]. 环境科学, 2021, 42(1): 147-158.
Li H, Li J, Song P, et al. Characteristics and ecological risk assessment of POPs pollution in sediments of Xiaoxingkai Lake in the Northeast China[J]. Environmental Science, 2021, 42(1): 147-158. [本文引用:1]
[55] 朱冰清, 高占啟, 王骏飞, . 太湖主要入湖河流多溴联苯醚和有机磷阻燃剂污染与风险评价[J]. 环境监控与预警, 2020, 12(5): 124-131.
Zhu B Q, Gao Z Q, Wang J F, et al. Contamination level and ecological Risk assessment of polybrominated diphenyl ethers (PBDEs) and organophosphorus flame retardants (OPFRs) in main inflow Rivers of Taihu Lake[J]. Environmental Monitoring and Forewarning, 2020, 12(5): 124-131. [本文引用:1]
[56] 姜丽丽, 朱洁羽, 王远坤, . 太湖饮用水源地多环芳烃分布特征和溯源分析[J]. 南京大学学报: 自然科学, 2016, 52(2): 361-369.
Jiang L L, Zhu J Y, Wang Y K, et al. Distribution characteristics and source identification analysis of polycyclic aromatic hydrocarbons in drinking water sources in Taihu Lake Basin[J]. Journal of Nanjing University (Natural Sciences), 2016, 52(2): 361-369. [本文引用:1]
[57] 张文博, 刘宾绪, 江涛, . 环渤海渔港沉积物多环芳烃的污染特征和生态风险评价[J]. 环境化学, 2022, 41(2): 561-571.
Zhang W B, Liu B X, Jiang T, et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from fishing ports along the coast of Bohai Sea[J]. Environmental Chemistry, 2022, 41(2): 561-571. [本文引用:1]
[58] 李胜生, 谭浩, 陈园园, . 升金湖湿地保护区表层沉积物中持久性有机污染物残留特征[J]. 安徽农业科学, 2018, 46(12): 69-73, 117.
Li S S, Tan H, Chen Y Y, et al. Characteristics of residual persistent organic pollutants in surface sediments of Shengjinhu Wetland reserve[J]. Journal of Anhui Agricultural Sciences, 2018, 46(12): 69-73, 117. [本文引用:1]
[59] 鲁垠涛, 刘明丽, 刘殷佐, . 长江表层土壤多氯联苯污染特征及风险评价[J]. 中国环境科学, 2018, 38(12): 4617-4624.
Lu Y T, Liu M L, Liu Y Z, et al. Characteristics and health risk assessment of polychlorinated biphenyls in surface soil of the Yangtze River[J]. China Environmental Science, 2018, 38(12): 4617-4624. [本文引用:1]
[60] 刘嘉烈, 石运刚, 唐娜, . 重庆长江流域鲫鱼和沉积物中17种全氟化合物污染特征[J]. 环境化学, 2020, 39(12): 3450-3461.
Liu J L, Shi Y G, Tang N, et al. Pollution characteristics of seventeen per- and polyfluoroalkyl substances in fish and sediments of Yangtze River Basin in Chongqing City[J]. Environmental Chemistry, 2020, 39(12): 3450-3461. [本文引用:1]
[61] 倪余文, 陈吉平, 张雪萍, . 辽河干流沉积物中多氯联苯的水平与污染特点[C]//第三届全国环境化学学术大会论文集. 厦门: 中国化学会, 2011: 68.
Ni Y W, Chen J P, Zhang X P, et al. Levels and Pollution Characteristics of Polychlorinated Biphenyls in Sediments of the Liaohe River Mainstream[C]//Proceedings of the Third National Conference on Environmental Chemistry. Xiamen: Chinese Chemical Society, 2011: 68. [本文引用:1]
[62] 张嘉雯, 魏健, 吕一凡, . 衡水湖沉积物中典型持久性有机污染物污染特征与风险评估[J]. 环境科学, 2020, 41(3): 1357-1367.
Zhang J W, Wei J, LüY F, et al. Occurrence and ecological Risk assessment of typical persistent organic pollutants in Hengshui Lake[J]. Environmental Science, 2020, 41(3): 1357-1367. [本文引用:1]
[63] Wu L P, Moses S, Liu Y Q, et al. A concept for studying the transformation reaction of hexachlorocyclohexanes in food webs using multi-element compound-specific isotope analysis[J]. Analytica Chimica Acta, 2019, 1064: 56-64. [本文引用:1]
[64] 陈社军, 麦碧娴, 曾永平, . 珠江三角洲及南海北部海域表层沉积物中多溴联苯醚的分布特征[J]. 环境科学学报, 2005, 25(9): 1265-1271.
Chen S J, Mai B X, Zeng Y P, et al. Polybrominated diphenyl ethers (PBDEs) in surficial sediments of the Pearl River Delta and adjacent South China Sea[J]. Acta Scientiae Circumstantiae, 2005, 25(9): 1265-1271. [本文引用:1]
[65] Zheng B H, Zhao X R, Liu L S, et al. Effects of hydrodynamics on the distribution of trace persistent organic pollutants and macrobenthic communities in Bohai Bay[J]. Chemosphere, 2011, 84(3): 336-341. [本文引用:3]
[66] 冯秋园, 吴桐, 万祎, . 持久性有机污染物(POPs)在水生生态系统中的环境行为[J]. 北京大学学报: 自然科学版, 2017, 53(3): 588-596.
Feng Q Y, Wu T, Wan Y, et al. Environmental behavior of persistent organic pollutants (POPs) in aquatic ecosystem[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(3): 588-596. [本文引用:1]
[67] Nagy A S, Szabó J, Vass I. Occurrence and distribution of polycyclic aromatic hydrocarbons in surface water and sediments of the Danube River and its tributaries, Hungary[J]. Journal of Environmental Science and Health, Part A, 2014, 49(10): 1134-1141. [本文引用:1]
[68] Dachs J, Lohmann R, Ockenden W A, et al. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants[J]. Environmental Science & Technology, 2002, 36(20): 4229-4237. [本文引用:1]
[69] Dachs J, Eisenreich S J, Hoff R M. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants[J]. Environmental Science & Technology, 2000, 34(6): 1095-1102. [本文引用:1]
[70] Sand y A L, Guo J, Miskewitz R J, et al. Fluxes of polychlorinated biphenyls volatilizing from the Hudson River, New York measured using micrometeorological approaches[J]. Environmental Science &Technology, 2012, 46(2): 885-891. [本文引用:1]
[71] Wong F, Hung H, Dryfhout-Clark H, et al. Time trends of persistent organic pollutants (POPs) and Chemicals of Emerging Arctic Concern (CEAC) in Arctic air from 25 years of monitoring[J]. Science of the Total Environment, 2021, 775: 145109. [本文引用:2]
[72] Larsson P, Andersson A, Broman D, et al. Persistent organic pollutants (POPs) in pelagic systems[J]. Ambio: A Journal of the Human Environment, 2000, 29(5): 202-209. [本文引用:1]
[73] Menone M L, Miglioranza K S B, Iribarne O, et al. The role of burrowing beds and burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping organochlorine pesticides[J]. Marine Pollution Bulletin, 2004, 48(3-4): 240-247. [本文引用:1]
[74] 亓学奎, 马召辉, 王英, . 有机氯农药在太湖水体-沉积物中的交换特征[J]. 生态环境学报, 2014, 23(12): 1958-1963.
Qi X K, Ma Z H, Wang Y, et al. Water-to-sediment exchange of organochlorine pesticides in Taihu Lake[J]. Ecology and Environmental Sciences, 2014, 23(12): 1958-1963. [本文引用:1]
[75] Schulze S, Zahn D, Montes R, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples[J]. Water Research, 2019, 153: 80-90. [本文引用:2]
[76] Sepulvado J G, Blaine A C, Hundal L S, et al. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids[J]. Environmental Science & Technology, 2011, 45(19): 8106-8112. [本文引用:1]
[77] Redon P O, Jolivet C, Saby N P A, et al. Occurrence of natural organic chlorine in soils for different land uses[J]. Biogeochemistry, 2013, 114(1-3): 413-419. [本文引用:1]
[78] Bentum J K, Essumang D K, Dodoo D K. Lindane and propuxur residues in the top soils of some cocoa growing areas in five districts of the Central region of Ghana[J]. Bulletin of the Chemical Society of Ethiopia, 2006, 20(2): 193-199. [本文引用:1]
[79] 江萍, 赵平, 万洪富, . 珠江三角洲典型地区表层农田土壤中多氯联苯残留状况[J]. 土壤, 2011, 43(6): 948-953.
Jiang P, Zhao P, Wan H F, et al. Concentrations of PCBs in agricultural soils of typical regions in Pearl River Delta[J]. Soils, 2011, 43(6): 948-953. [本文引用:1]
[80] 马妍, 程芦, 阮子渊, . 近20年中国表层土壤中多环芳烃时空分布特征及源解析[J]. 环境科学, 2021, 42(3): 1065-1072.
Ma Y, Cheng L, Ruan Z Y, et al. Polycyclic aromatic hydrocarbons in surface soil of China (2000-2020): temporal and spatial distribution, influencing factors[J]. Environmental Science, 2021, 42(3): 1065-1072. [本文引用:1]
[81] 周燕. 西安市居民区土壤多环芳烃来源及健康风险评价[J]. 环境科学导刊, 2019, 38(6): 71-77.
Zhou Y. Pollution, sources and health risk assessment of polycyclic aromatic hydrocarbons in soils in residential areas of Xi’an City[J]. Environmental Science Survey, 2019, 38(6): 71-77. [本文引用:1]
[82] Toms L M L, Mortimer M, Symons R K, et al. Polybrominated diphenyl ethers (PBDEs) in sediment by salinity and land -use type from Australia[J]. Environment International, 2008, 34(1): 58-66. [本文引用:1]
[83] 王国庆, 许学慧, 李跃进. 多溴联苯醚及其衍生物在土壤中的分布、转化和生物效应研究进展[J]. 环境科学研究, 2021, 34(3): 755-765.
Wang G Q, Xu X H, Li Y J. Distribution, transformation and biological effects of polybrominated diphenyl ethers and their derivatives in soil: a review[J]. Research of Environmental Sciences, 2021, 34(3): 755-765. [本文引用:2]
[84] 陈雷, 戴玙芽, 陈晓婷, . 全氟及多氟化合物在土壤中的污染现状及环境行为研究进展[J]. 农业环境科学学报, 2021, 40(8): 1611-1622.
Chen L, Dai Y Y, Chen X T, et al. Research progress on the pollution status and environmental behavior of per-and polyfluoroalkyl substances in soil[J]. Journal of Agro-Environment Science, 2021, 40(8): 1611-1622. [本文引用:1]
[85] Ukalska-Jaruga A, Smreczak B. The impact of organic matter on polycyclic aromatic hydrocarbon (PAH) availability and persistence in soils[J]. Molecules, 2020, 25(11): 2470. [本文引用:1]
[86] Kobližková M, Růžičková P, Čupr P, et al. Soil burdens of persistent organic pollutants: their levels, fate, and risks. Part IV. Quantification of volatilization fluxes of organochlorine pesticides and polychlorinated biphenyls from contaminated soil surfaces[J]. Environmental Science & Technology, 2009, 43(10): 3588-3595. [本文引用:1]
[87] 张兆鑫, 李家科, 蒋春博. 土壤典型持久性有机污染物界面行为及调控技术研究进展[J]. 应用基础与工程科学学报, 2021, 29(3): 517-532.
Zhang Z X, Li J Z, Jiang C B. Advances in interfacial behavior and regulation technology of typical persistent organic pollutants in soil[J]. Journal of Basic Science and Engineering, 2021, 29(3): 517-532. [本文引用:1]
[88] 高玉娟, 谢承劼, 余红, . 溴代阻燃剂在土壤中的迁移转化研究进展[J]. 环境科学研究, 2021, 34(2): 479-490.
Gao Y J, Xie C J, Yu H, et al. Research progress on migration and transformation of brominated flame retardants in soil[J]. Research of Environmental Sciences, 2021, 34(2): 479-490. [本文引用:1]
[89] 阮哲璞, 徐希辉, 陈凯, . 微生物降解持久性有机污染物的研究进展与展望[J]. 微生物学报, 2020, 60(12): 2763-2784.
Ruan Z P, Xu X H, Chen K, et al. Recent advances in microbial catabolism of persistent organic pollutants[J]. Acta Microbiologica Sinica, 2020, 60(12): 2763-2784. [本文引用:1]
[90] 肖子冰, 邢航, 窦增培, . 自然环境中能否出现可有效降解碳氟链的微生物[J]. 日用化学工业, 2021, 51(12): 1242-1249.
Xiao Z B, Xing H, Dou Z P, et al. Analysis about whether microorganisms that can effectively degrade fluorocarbon chains would appear in the natural environment[J]. China Surfactant Detergent & Cosmetics, 2021, 51(12): 1242-1249. [本文引用:1]
[91] 杨丽芝, 杨雪柯, 刘春华. 山东平原地区浅层地下水有机污染特征分析[J]. 中国地质调查, 2015, 2(8): 25-30.
Yang L Z, Yang X K, Liu C H. Characteristics of organic pollution of shallow groundwater in the Shand ong Plain[J]. Geological Survey of China, 2015, 2(8): 25-30. [本文引用:1]
[92] 李晨洋, 刘爽, 孙楠, . 土壤和沉积物中PAHs环境行为研究进展[J]. 东北农业大学学报, 2021, 52(3): 87-94.
Li C Y, Liu S, Sun N, et al. Research progress of PAHs environmental behaviors on soil and sediment[J]. Journal of Northeast Agricultural University, 2021, 52(3): 87-94. [本文引用:1]
[93] Nizzetto L, Liu X, Zhang G, et al. Accumulation kinetics and equilibrium partitioning coefficients for semivolatile organic pollutants in forest litter[J]. Environmental Science & Technology, 2014, 48(1): 420-428. [本文引用:1]
[94] Kalisa E, Nagato E, Bizuru E, et al. Pollution characteristics and risk assessment of ambient PM2. 5-bound PAHs and NPAHs in typical Japanese and New Zealand cities and rural sites[J]. Atmospheric Pollution Research, 2019, 10(5): 1396-1403. [本文引用:1]
[95] 穆熙, 李尧捷, 曹红梅, . 中国西部某规模化电子垃圾拆解厂多氯联苯排放污染特征及职业呼吸暴露风险[J]. 环境科学学报, 2019, 39(8): 2800-2810.
Mu X, Li Y J, Cao H M, et al. Pollution characteristics and occupational inhalation exposure risks of PCBs in a formal and scaled e-waste dismantling plant, western China[J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2800-2810. [本文引用:1]
[96] Li Y F, Qiao L N, Ren N Q, et al. Decabrominated diphenyl ethers (BDE-209) in Chinese and global air: levels, gas/particle partitioning, and long-range transport: is long-range transport of BDE-209 really governed by the movement of particles?[J]. Environmental Science & Technology, 2017, 51(2): 1035-1042. [本文引用:1]
[97] 冯新斌, 曹晓斌, 付学吾, . 环境地球化学研究近十年若干新进展[J]. 矿物岩石地球化学通报, 2021, 40(2): 253-289.
Feng X B, Cao X B, Fu X W, et al. Some progresses in environmental geochemistry study in China in the past decade[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 253-289. [本文引用:1]
[98] Wang X P, Wang C F, Zhu T T, et al. Persistent organic pollutants in the polar regions and the Tibetan Plateau: a review of current knowledge and future prospects[J]. Environmental Pollution, 2019, 248: 191-208. [本文引用:1]
[99] Tian C G, Ma J M, Liu L Y, et al. A modeling assessment of association between East Asian summer monsoon and fate/outflow of α-HCH in Northeast Asia[J]. Atmospheric Environment, 2009, 43(25): 3891-3901. [本文引用:1]
[100] Wang X P, Sun D C, Yao T D. Climate change and global cycling of persistent organic pollutants: a critical review[J]. Science China Earth Sciences, 2016, 59(10): 1899-1911. [本文引用:1]
[101] Wöhrnschimmel H, Macleod M, Hungerbuhler K. Emissions, fate and transport of persistent organic pollutants to the Arctic in a changing global climate[J]. Environmental Science & Technology, 2013, 47(5): 2323-2330. [本文引用:1]
[102] Lei Y D, Wania F. Is rain or snow a more efficient scavenger of organic chemicals?[J]. Atmospheric Environment, 2004, 38(22): 3557-3571. [本文引用:1]