火山岩风化程度的厘定——以黔西晚二叠世超基性岩和基性玄武岩为例
刘德成1,2,3, 王卫东4,5
1.北京市地质矿产勘查开发集团有限公司,北京 100050
2.北京市地质灾害防治研究所,北京 100120
3.北京市京盛工程勘察有限公司,北京 102206
4.中南大学土木工程学院,湖南 长沙 410075
5.重载铁路工程结构教育部重点实验室(中南大学),湖南 长沙 410075

第一作者简介: 刘德成(1978—),男,高级工程师,主要从事地质灾害评价与防治、矿山生态环境修复、土地利用与规划、水土环境污染控制与治理工作。Email: 9039462@qq.com

摘要

对岩石风化强度反应敏感的化学风化指标是定量评价岩石风化程度的重要参数。评述了包括帕克风化指数(weathering index of Parker,WIP)、风化势能指数(weathering potential index,WPI)、化学蚀变指数(chemical index of alteration,CIA)等12种在以往研究中被认为适合用于岩浆岩风化程度判定的化学风化指标的优点及其局限性。引入了岩石氧化因数 Xo( Xo=Fe2O3/(FeO+Fe2O3))评价火山岩的风化程度,并使用该指标评价了12种化学风化指标在评价超基性岩和基性岩风化中的适用性。在黔西晚二叠世超基性岩和基性玄武岩的实际应用中,将 Xo≤0.44和 Xo≤0.55作为超基性岩和基性玄武岩未遭受风化的下限,结合定性分析结果,按风化程度将两种岩石分为新鲜岩石、微风化岩石、中风化岩石、强风化岩石和全风化岩石。 Xo与12种化学风化指标散点交会的结果显示: BWI、A-FM、LOI这3种指标既适合于风化初期超基性岩和基性玄武岩风化程度的评价,也适合风化中后期超基性岩和基性玄武岩风化程度的评价,其余9种指标仅对风化中后期超基性岩和基性玄武岩的风化程度反应敏感。研究可为超基性岩和基性玄武岩岩质区的工程地质调查与勘察、潜在地质灾害评价、地质灾害隐患防治等提供新思路、新方法,对相似岩质区的岩体风化程度评价研究提供参考。

关键词: 化学风化指标; 岩石氧化因数; 风化程度; 超基性岩; 基性玄武岩; 黔西
中图分类号:P521.1;P642.5 文献标志码:A 文章编号:2095-8706(2023)06-0050-10
Weathering degree determination of volcanic rocks: A case study of Late Permian ultrabasic rocks and basic basalts in Western Guizhou Province
LIU Decheng1,2,3, WANG Weidong4,5
1. Beijing Geological and Mineral Exploration and Development Group Co.,Ltd.,Beijing 100050,China
2. Beijing Institute of Geological Hazard Prevention,Beijing 100120,China
3. Beijing Jingsheng Engineering Survey Co.,Ltd.,Beijing,102206,China
4. School of Civil Engineering, Central South University,Hunan Changsha 410075,China
5. MOE Key Laboratory of Engineering Structures of Heavy Haul Railway (Central South University), Hunan Changsha 410075,China
Abstract

The chemical weathering index, which is sensitive to the response of rock weathering intensity, is an important parameter for quantitatively evaluating the degree of rock weathering. The advantages and limitations of 12 chemical weathering indicators were reviewed in this paper, including the weathering index of Parker (WIP), weathering potential index (WPI), and chemical index of alteration (CIA), which were considered suitable for determining the weathering degree of magmatic rocks in previous studies. The rock oxidation factor Xo( Xo=Fe2O3/(FeO+Fe2O3) was introduced to evaluate the weathering degree of volcanic rocks, and it was also used to evaluate the applicability of 12 chemical weathering indicators for analyzing the weathering of ultrabasic and basic rocks. In the practical application of Late Permian ultrabasic rocks and basic basalts in Western Guizhou Province, the lower limits for the unweathered ultrabasic rocks and basic basalts were Xo≤0.44 and Xo≤0.55. Based on the qualitative analysis results, these two types of rocks were divided into fresh rocks, slightly weathered rocks, moderately weathered rocks, strongly weathered rocks, and completely weathered rocks according to the degree of weathering. The scattered intersection results of Xo and 12 chemical weathering indicators show that BWI, A-FM, and LOI are not only suitable for evaluating the weathering degree of ultrabasic rocks and basic basalts in the early stage of weathering, but also suitable for evaluating the weathering degree of ultrabasic rocks and basic basalts in the middle and late stages of weathering. The other 9 indicators are only sensitive to response of results weathering degree of ultrabasic rocks and basic basalts in the middle and late stages of weathering. This research could provide new ideas and methods for engineering geological investigation and exploration, potential geological hazard evaluation, and prevention and control of geological hazard in ultrabasic and basic basalt rock areas, and provide guidance for the evaluation of rock weathering degree in similar rock areas.

Keyword: chemical weathering index; rock oxidation factor; weathering degree; ultrabasic rock; basic basalt; Western Guizhou Province
0 引言

风化作用是引起岩石力学性能劣化的重要因素[1, 2], 在地质灾害评价与防治、水利水电工程勘察中发挥着重要作用, 全风化或中—强程度风化都会引起岩质边坡力学性质(弹塑性、脆性、延性、流变性等)的降低[3, 4], 进而引发不良地质灾害。目前, 地质学、地球化学、水利水电工程、矿山工程、建筑与土木工程等领域定量判断岩体(石)风化程度的方法主要包括力学参数分析法[5, 6, 7]、工程物探方法[8, 9, 10, 11, 12, 13]和数学地质方法[14]。《GB 50218—94工程岩体分级标准》[5]提出了基于波速比(Kv)和风化系数(Kf)的岩石风化程度定量分类标准, 但这两种分类标准都需要以获取新鲜岩石的纵波速度、饱和单轴抗压强度背景值为前提; 王晓峰等[7]采用常规量化指标饱和单轴抗压强度(unconfined compressive strength, UCS)与标准贯入试验击数, 建立了岩石风化程度的定量分类标准, 但在试验中不同规格设备得到的标准贯入试验击数有很大差异性, 实验结果精度差、离散性大; 邵长云等[8]通过钻孔超声波测试, 将纵波与横波的速度换算成波速比来划分岩石的风化程度, 但岩体节理裂隙的发育程度会直接影响岩体波速, 在实际应用中很难取得理想效果。此外, 岩石力学参数测试普遍存在过程复杂、周期长、经济成本高、应用范围局限等问题[15, 16], 而岩石样品的主成分测试相对简单, 且部分元素的地球化学指标具有广泛的适用性, 通过构建不同化学风化指标与岩石风化程度的关系, 利用多项指标评价并划分岩石风化程度, 对不良地质灾害的评估与防治工作具有实用意义。

化学风化指标的原理基于当新鲜岩石遭受风化淋滤后, 其化学组分理论上会发生相应变化, 被广泛应用于岩石风化程度的评价研究[1, 17, 18, 19, 20, 21]。本文着重评述了在以往研究中被认为能较好反映火山岩风化程度变化的12种化学风化指标的优点及其使用上的局限性, 并引入了岩石氧化因数Xo(Xo=Fe2O3/(Fe2O3+FeO))[22, 23, 24, 25, 26]划分判定了黔西晚二叠世超基性岩和基性玄武岩的风化程度, 进而用该指标与12种化学风化指标做散点交会, 评价这12种指标在超基性岩和基性岩风化程度判定中的适用性。研究可为超基性岩和基性玄武岩岩质地区不良地质灾害调查、评价与防治提供科学依据, 为中性岩和酸性岩风化程度的划分提供新思路和新方法。

1 常用化学风化指标及其适用性

自20世纪20年代以来, 国内外学者已提出了30多种化学风化指标[1, 4, 19, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], 大多数指标都以全岩化学成分的测试分析为基础, 多以沉积岩和岩浆岩为研究对象, 不同化学风化指标都有其优点和使用的局限性。本文着重评述了在以往研究中被认为适合用于岩浆岩风化程度评判的风化指数, 包括铝-铁镁指数(Al-Fe Mg, A-FM)[4]、修订过的风化潜力指数(modify weathering potential index, MWPI)[29]、帕克风化指数(weathering index of Parker, WIP)[31]、科尔曼风化指数(weathering index of Colman, WIC)[32]、化学蚀变指数(chemical index of alteration, CIA)[33]、碱-铝指数(basicity aluminium index, BA)[34]、原生矿物蚀变指数(mineralogical index of alteration, MIA)[38]、烧失量(loss on ignition , LOI)[39, 40, 45]、风化潜力指数(weathering potential index, WPI)[41]、风化指数(weathering index, W)[42]、花岗岩风化指数(weathering index of gra-nite, WIG)[44]、玄武岩风化指数(basalt weathering index, BWI)[48]等12种化学风化指标的优点及其使用局限性。

彭晋[4]基于不同风化阶段(除极端风化程度外)呈高度不溶性三价态的Fe3+富集与Al富集具有一致性, 而二价态的Fe2+和Mg的活动性较强的特点, 提出了风化指数A-FM, 该指数对峨眉山玄武岩风化程度的变化敏感性显著, 更适用于判定风化前期玄武岩的风化程度; Reich[29]提出的MWPI可以很好地表征玄武岩剖面的风化程度, 表现为从新鲜玄武岩、半风化玄武岩到土壤的MWPI值逐渐减小, 但该指标不适用于黑色页岩和沉积碎屑岩风化程度的评价; Parker[31]通过计算硅酸岩中碱金属和碱土金属元素在风化产物中所占的比例, 提出用WIP评价硅酸岩风化强度, 但碱金属和碱土金属元素在强风化情况下会严重流失, 显然不适用于评价风化程度较高的岩石; WIC由Coleman[32]以风化过程中活动性元素的氧化物(Na2O、K2O、CaO、MgO)和不活跃元素的氧化物(Al2O3、Fe2O3、TiO2)的摩尔比值来定义, 随风化程度的增高WIC值减小, 该指标对酸性花岗岩较为敏感, 不适合含碎屑和自生方解石的沉积岩的风化评价; Nesbitt等[33]基于加拿大古元古代花岗岩-辉石岩等化学组成相对均一的岩浆岩的风化研究, 以不活跃元素的氧化物Al2O3和活动性元素的氧化物Na2O、K2O和CaO的摩尔比值来定义化学蚀变指数CIA, 其值随风化程度的增高而增大, 其应用前提是风化母岩的化学组成相对均一; Harnois[34]提出的碱-铝指数BA是易溶组分碱金属、碱土金属元素与相对稳定元素Al的比值, 该指数应用的前提是假设风化过程中Al不活跃, 但在实际风化过程中该条件很难满足, 适用于母岩化学组分均匀的岩石风化程度的判定。Voicu等[38]提出的指示原生矿物蚀变程度的指标MIA=2× (CIA-50), 克服了CIA指标的取值范围局限于50~100之间的不足, 但存在和CIA指标同样的使用限制。

Irfan[39, 40]对香港风化火山岩特征的研究表明, WPI和LOI等指标能较好地指示火山岩和花岗岩风化程度的变化。但Duzgoren等[51]在对同一地区火山碎屑岩化学风化指数的评估中注意到LOI与某滑坡酸性火山碎屑岩风化程度之间的相关关系很差。此外, 徐则民等[45]在峨眉山玄武岩风化程度评价中注意到当风化程度较低时, LOI对风化程度的指示性较差, 在风化中后期, 风化程度越高, LOI越大。因此, LOI适合风化中后期, 而不适用于风化初期的玄武岩风化程度评价。Price等[41]提出的风化潜力指数WPI对于玄武岩风化程度的变化更敏感, 随着玄武岩风化程度的加深, WPI的变化比WIP、PI、SA、STI更显著, 但不适用于沉积岩风化程度评价。Ohta等[42]基于基性岩、中性岩、酸性岩及其风化产物的化学组成建立的风化指数W, 适用于化学组成不均一岩浆岩的风化程度的判定; Gong等[44]基于花岗岩风化过程提出的风化指数WIG, 其计算不需要CO2含量的数据, 为依据全岩主量元素数据判定岩石风化程度提供了可能; 王卫东等[49]提出了玄武岩化学风化指数BWI, 并与常用的CIA、WPI等18种化学风化指标比较, 发现该指标在对基性玄武岩风化程度的判别中单调性更为显著。

2 岩石氧化因数的常见表达式

岩石遭受物理作用和化学风化作用的改造使得低价态的Fe2+被氧化为高价态的Fe3+, Fe3+快速水解氧化成Fe(OH)3, 再经过脱水形成Fe2O3, 而硅酸盐中的Al3+被水解成Al2O3胶体, 风化的最终产物为铝土矿, 岩石遭受以水化作用为主的化学风化作用的结果必然造成Fe3+和Al3+的富集, Fe2+减少[25, 26, 52, 53, 54]。因此, 岩石中铁的氧化物Fe2O3、FeO的含量及两者比值可以反映岩石的氧化程度及相关信息。

用以评价岩石氧化程度的指标一般称为氧化率、氧化度、氧化系数, 计算表达式见表1。本文对岩石氧化程度的计算沿用Matthews[55]提出的计算表达式Fe2O3/(Fe2O3+FeO), 称为氧化因数, 变量符号为Xo

表1 岩石氧化程度指标 Tab.1 Indicators forevaluating the rock oxidation degree
3 现存问题与风化岩石下限参考标准
3.1 现存问题

尽管岩石氧化因数是判断岩石风化程度的一项重要参数, 但国内将其应用于火山岩氧化程度或风化程度的实践较少。黄建霞[57]在厦门港湾氧化还原沉积环境的划分研究中根据Fe3+/Fe2+值, 粗略划定在强氧化环境区Fe3+/Fe2+值高于1.5, 弱氧化环境区Fe3+/Fe2+值介于0.8~1.5。单玄龙等[58]应用该标准计算了松辽盆地营城组陆上氧化环境火山岩的氧化比(Fe3+/Fe2+)高于0.8。该指标的不足之处是没有考虑火山岩与沉积岩在形成条件、发育环境、分布规律等方面的显著差异, 划分沉积物氧化程度的临界标准并不适用于由火山作用形成的火山岩。

根据Le Maitre[56]的数据, 本文统计了钙碱性系列火山岩(拉斑玄武岩、玄武岩、安山岩、英安岩、流纹英安岩和流纹岩)的氧化因数平均值(表2), 发现在同一氧化还原环境中, 不同岩浆酸度火山岩的Xo值和Fe2O3/FeO值差异较大, 表现为岩浆酸度越高, 火山岩氧化因数Xo越高(表2), 即火山岩Fe2O3/(FeO+Fe2O3)值或Fe2O3/FeO值与岩浆酸度存在正相关。因此, 根据黄剑霞[57]和单玄龙等[58]采用传统方法构建的标准, 不能对不同岩浆性质火山岩的氧化程度或风化程度进行有效的判别。

表2 钙碱性系列火山岩氧化因数Xo平均值统计结果[56] Tab.2 Average value of rock oxidation factor Xo for calcalkaline series volcanic rocks[56]
3.2 风化岩石下限参考标准

前述表明, 在应用火山岩氧化因数Xo判断火山岩氧化程度或风化程度时, 针对超基性岩、基性岩、中性岩和酸性岩应选取不同的下限标准。Matthews[55]利用Fe2O3/(FeO+Fe2O3)值对一些在风化作用中易受影响的氧化物, 如CaO, MgO, K2O和H2O的含量进行投图, 表明风化的玄武岩常表现出Fe2O3/(FeO+Fe2O3)值增大的特点, 若氧化物Fe2O3/(FeO+Fe2O3)值大于0.55, 玄武岩就不能被视为新鲜的岩石。因此, 本文中风化玄武岩的氧化因数Xo下限标准取值0.55(图1)。

图1 基于氧化因数Xo的不同酸度火山岩风化岩石与新鲜岩石下限标准Fig.1 Lower limit standards for weathered and fresh volcanic rocks with different acidity based on oxidation factor Xo

由于本文的实例研究中还涉及到超基性岩, 结合Le Maitre[56]和何衍鑫等[59]的研究成果, 计算统计超基性岩、基性岩、中性岩和酸性岩弱氧化环境(即微风化岩石与新鲜岩石)判定下限标准, 当超基性岩氧化因数Xo值大于0.44(图1), 不能被视为新鲜的岩石。

4 黔西晚二叠世玄武岩风化程度的厘定
4.1 分析方法与数据获取

本文以郭靖[60]取自黔西不同风化层的6件晚二叠世超基性岩样品和3件基性玄武岩样品为研究对象, 9块样品氧化因数Xo与12种化学风化指数的计算结果见表3。结合图1构建的超基性岩和基性岩氧化因数Xo的下限标准, 以及郭靖[60]文章中的定性描述和基于可拓学定量评价的风化成果, 定量判定岩石样品风化程度。

表3 黔西超基性岩和玄武岩氧化因数Xo与化学风化指数计算结果 Tab.3 Calculation results of oxidation factor Xo and chemical weathering index of ultrabasic rocks and basalts in Western Guizhou Province
4.2 玄武岩风化程度的厘定

9块样品中, 样品1#和2#取自弱风化层, 样品3#和4#取自中风化层, 样品5#、6#和7#取自强风化层, 样品8#和9#取自全风化层。样品的主成分测试结果[60]显示, SiO2和FeO的含量随超基性岩和基性玄武岩风化程度的加深呈显著减小的趋势, 而Fe2O3和Al2O3的含量随超基性岩和基性玄武岩风化程度的加深呈显著增加的趋势(图2), 证实风化作用会造成Fe2O3和Al2O3富集, FeO减少, 表明引入氧化因数Xo评价玄武岩风化程度是科学合理的。

图2 9块样品随风化程度的变化其主要氧化物含量变化趋势[60]Fig.2 Change trend of main oxide content of 9 samples with the change of weathering degree[60]

统计结果表明, 6件超基性岩和3件基性玄武样品的Xo值介于0.36~0.98(图3), 以本文确定的下限标准, 结合郭靖[60]的定性分析结果, 将黔西地区晚二叠世超基性岩和基性玄武岩风化程度的划分标准确定为: 氧化因数Xo≤ 0.44、(0.44, 0.58]、(0.58, 0.72]、(0.72, 0.86]和> 0.86, 依次对应超基性岩的新鲜岩石、微风化岩石、中风化岩石、强风化岩石和全风化岩石; 氧化因数Xo≤ 0.55、(0.55, 0.66]、(0.66, 0.77]、(0.77, 0.88]和> 0.88, 依次对应基性玄武岩的新鲜岩石、微风化岩石、中风化岩石、强风化岩石和全风化岩石(图3)。

图3 9块样品氧化因数Xo分布与风化(氧化)程度划分[60]Fig.3 Distribution of oxidation factor Xo distribution and classification of weathering (oxidation) degree in 9 samples[60]

4.3 12种化学风化指标的适宜性评价

表3中的岩石氧化因数Xo和12种化学风化指标做散点交会, 评价其对超基性岩和基性岩风化程度划分研究的适用性。9件样品氧化因数Xo与WIP(图4(a))、MWPI(图4(b))、WIC(图4(c))、WPI(图4(d))、WIP(图4(e))、BA(图4(f))指标散点交会的相关性表明, 对于未风化岩石(样品1#、2#)和微风化—中风化岩石(样品3#、4#), 两者无明显敏感性和单调性; 但对中强风化岩石(样品5#、6#)和全风化岩石(样品7#、8#、9#), 两者呈显著负相关。说明这6种化学风化指标均不适宜风化初期超基性岩和基性玄武岩风化程度的评价, 仅适合于风化中后期超基性岩和基性玄武岩风化程度的评价。

图4-1 9块样品氧化因数Xo与12种化学风化指标散点图Fig.4-1 Scatter plot of the oxidation factor Xo and 12 chemical weathering parameters of 9 samples

图4-2 9块样品氧化因数Xo与12种化学风化指标散点图Fig.4-2 Scatter plot of the oxidation factor Xo and 12 chemical weathering parameters of 9 samples

9件样品的氧化因数Xo与CIA、BWI、MIA、W、A-FM、LOI指标散点相关性表明, CIA(图4(g))、MIA(图4(i))和W[4](图4(j))这3种指标在未风化岩石(样品1#、2#)和微风化—中风化岩石(样品3#、4#)中与氧化因数Xo呈显著负相关, 在中强风化(样品5#、6#)和全风化(样品7#、8#、9#)岩石中与氧化因数Xo呈显著正相关。表明这3项化学风化指标也不适用于风化初期玄武岩风化程度的评价, 对风化中后期玄武岩风化程度反应敏感。BWI(图4(h))、A-FM(图4(k))、LOI(图4(l))这3种指标在新鲜岩石到全风化岩石中与氧化因数Xo均表现出显著正相关, 既适合风化初期超基性岩和基性玄武岩风化程度的评价, 也适合风化中后期超基性岩和基性玄武岩风化程度的评价。

5 结论

(1)引入岩石氧化因数Xo(Xo=Fe2O3/(Fe2O3+FeO)作为岩石风化程度的评价指标, 建立超基性、基性、中性和酸性火山岩的新鲜岩石与风化岩石下限判别标准, 厘定了黔西晚二叠世6件超基性岩和3件基性玄武岩样品的风化程度, 构建了基于岩石氧化因数的新鲜岩石、微风化岩石、中风化岩石、强风化岩石和全风化岩石的定量判定标准。

(2)岩氧化因数Xo与以往研究中被认为能较好反映火山岩风化程度变化的12种化学风化指标(A-FM、MWPI、WIP、WIC、CIA、Ba、MIA、LOI、WPI、W、WIG、BWI)做散点交会, 得出BWI、A-FM、LOI这3项指标既适合于风化初期超基性岩和基性玄武岩风化程度的评价, 也适合风化中后期超基性岩和基性玄武岩风化程度的评价, 其余9种指标仅对风化中后期超基性岩和基性玄武岩的风化程度反应敏感。

(责任编辑: 魏昊明)

参考文献
[1] 刘成禹, 何满潮. 对岩石风化程度敏感的化学风化指数研究[J]. 地球与环境, 2011, 39(3): 349-354.
Liu C Y, He M C. Research on the sensitive chemical weathering indices to rock weathering[J]. Earth and Environment, 2011, 39(3): 349-354. [本文引用:3]
[2] 魏伟, 沈军辉, 苗朝, . 风化、蚀变对花岗斑岩物理力学特性影响分析[J]. 工程地质学报, 2012, 20(4): 599-606.
Wei W, Shen J H, Miao Z, et al. Influence analysis of weathering and altering for physical and mechanical characteristics of granite-porphyry[J]. Journal of Engineering Geology, 2012, 20(4): 599-606. [本文引用:1]
[3] 代伟, 陈建宏, 李志江. 不同风化程度砂岩力学特性实验研究[J]. 武汉理工大学学报, 2008, 30(12): 140-142, 169.
Dai W, Chen J H, Li Z J. Research on mechanical properties about sand stone in different level of weathering[J]. Journal of Wuhan University of Technology, 2008, 30(12): 140-142, 169. [本文引用:1]
[4] 彭晋. 峨眉山玄武岩结构体风化特征研究[D]. 昆明: 昆明理工大学, 2015.
Peng J. The Study of Weathering Characteristics of Emeishan Basalt of Rock Block[D]. Kunming: Kunming University of Science and Technology, 2015. [本文引用:5]
[5] 长江水利委员会长江科学院. GB 50218—1994 工程岩体分级标准[S]. 北京: 中国标准出版社, 1995.
Yangtze River Water Conservancy Committee Yangtze River Academy of Sciences. GB 50218—1994 Stand ard for Engineering Classification of Rock Masses[S]. Beijing: Stand ards Press of China, 1995. [本文引用:2]
[6] 刘春, 白世伟. 岩体风化程度两级模糊综合评判研究[J]. 岩石力学与工程学报, 2005, 24(2): 252-256.
Liu C, Bai S W. Fuzzy mathematics method for analysis of the weathering degree of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(2): 252-256. [本文引用:1]
[7] 王晓峰, 韩宏韬. 岩石风化程度的定量分类[J]. 工程地质学报, 2011, 19(S1): 11-13.
Wang X F, Han H T. Quantitative ciassification of rock weathering degree[J]. Journal of Engineering Geology, 2011, 19(S1): 11-13. [本文引用:2]
[8] 邵长云, 钟庆华, 葛双成, . 利用岩体波速定量划分岩石风化度的试验研究[J]. 工程勘察, 2012, 40(3): 87-90, 95.
Shao C Y, Zhong Q H, Ge S C, et al. The research on quantitative dividing rock's efflorescent degree using wave velocity test[J]. Geotechnical Investigation & Surveying, 2012, 40(3): 87-90, 95. [本文引用:2]
[9] 李学颖, 孙光, 高涛. 长春白垩纪泥岩风化程度的划分方法[J]. 岩土工程技术, 2015, 29(6): 320-323.
Li X Y, Sun G, Gao T. Division method of Changchun cretaceous mudstones weathering degree[J]. Geotechnical Engineering Technique, 2015, 29(6): 320-323. [本文引用:1]
[10] 吕游. 工程地质勘察中关于岩石风化程度的识别及判定方法[J]. 环球人文地理, 2017(6): 102.
Lv Y. Identification of rock weathering degree in engineering geological survey determination method[J]. Cultural Geography, 2017(6): 102. [本文引用:1]
[11] 刘晓波, 白广明. 一种新的测试坝基岩体风化程度的方法[J]. 黑龙江水利, 2017, 3(5): 5-8.
Liu X B, Bai G M. A new method of testing weathering degree of dam foundation rock mass[J]. Heilongjiang Water Resources, 2017, 3(5): 5-8. [本文引用:1]
[12] 李仁杰, 纪成亮, 刘浩, . 工程物探方法在岩石风化程度判别中的应用[J]. 山西建筑, 2018, 44(8): 62-63.
Li R J, Ji C L, Liu H, et al. The application of the engineering geophysical survey methods to judge the degree of rock weathering[J]. Shanxi Architecture, 2018, 44(8): 62-63. [本文引用:1]
[13] 杨全红, 褚衍辉, 张亚宁. 地质雷达在岩石风化程度划分上的应用[J]. 电力勘测设计, 2018(S1): 39-42.
Yang Q H, Chu Y H, Zhang Y N. Application of geological radar in dividing degree of rock weathering[J]. Electric Power Survey & Design, 2018(S1): 39-42. [本文引用:1]
[14] 董兆祥. 风化岩体及风化带划分的数学地质方法研究[J]. 长春地质学院学报, 1987, 17(1): 73-80.
Dong Z X. Research of mathemayical geology method of weathering rock mass and dividing belt of weathering rock mass[J]. Journal of Changchun College of Geology, 1987, 17(1): 73-80. [本文引用:1]
[15] Cao R H, Cao P, Lin H, et al. Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: Experimental studies and particle mechanics approach[J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 763-783. [本文引用:1]
[16] 于恒昌. 基于数字钻探测试技术的岩石力学参数测定方法研究[D]. 济南: 山东大学, 2018.
Yu H C. Study on Testing Methods of Rock Mechanics Parameters Based on Digital Drilling Testing Technology[D]. Ji'nan: Shand ong University, 2018. [本文引用:1]
[17] 吴宏伟, 尚彦军, 曲永新, . 香港花岗岩风化分级化学指标体系与风化壳分带[J]. 工程地质学报, 1999, 7(2): 125-134.
Wu H W, Shang Y J, Qu Y X, et al. Chemical weathering indices, classification, and zoning of weathered granitic rock in Hong Kong[J]. Journal of Engineering Geology, 1999, 7(2): 125-134. [本文引用:1]
[18] Esaki T, Jiang K. Comprehensive study of the weathered condition of welded tuff from a historic stone bridge in Kagoshima, Japan[J]. Engineering Geology, 2000, 55(1/2): 121-130. [本文引用:1]
[19] Topal T. Quantification of weathering depths in slightly weathered tuffs[J]. Environmental Geology, 2002, 42(6): 632-641. [本文引用:2]
[20] 胡俊杰, 马寅生, 吴祎, . 柴达木盆地侏罗纪古气候演变过程: 来自化学风化特征的证据[J]. 高校地质学报, 2019, 25(4): 548-557.
Hu J J, Ma Y S, Wu Y, et al. Jurassic palaeoclimate evolution of the Qaidam Basin: evidence from chemical weathering analyses[J]. Geological Journal of China Universities, 2019, 25(4): 548-557. [本文引用:1]
[21] 李绪龙, 张霞, 林春明, . 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 2022, 28(1): 51-63.
Li X L, Zhang X, Lin C M, et al. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1): 51-63. [本文引用:1]
[22] Rittmann A. Stable Mineral Assemblages of Igneous Rocks: A Method of Calculation[M]. Berlin: Springer, 1973. [本文引用:1]
[23] 邱家骧. 火山岩中Fe2O3、FeO的调整与方法[J]. 地质科技情报, 1985, 4(2): 32-39.
Qiu J X. Adjustment and method of Fe2O3 and FeO in volcanic rocks[J]. Bulletin of Geological Science and Technology, 1985, 4(2): 32-39. [本文引用:1]
[24] 李明连, 蓝恒春. 岩浆冷凝成岩阶段的氧逸度与华南热液型铀矿的成矿类型[J]. 铀矿地质, 2014, 30(3): 168-171, 186.
Li M L, Lan H C. The oxygen fugacity of magma in condensed diagenesis and the hydrothermal uranium mineralization type in South China[J]. Uranium Geology, 2014, 30(3): 168-171, 186. [本文引用:1]
[25] 刘德成, 陈亚军, 伍宏美, . 陆上和水下喷发成因火山岩特征及元素地球化学判别——以新疆三塘湖盆地马朗凹陷上石炭统火山岩为例[J]. 东北石油大学学报, 2021, 45(6): 41-51, 79.
Liu D C, Chen Y J, Wu H M, et al. Characteristics and element geochemical discrimination of subaerial and subaqueous volcanic rocks: taking the Upper Carboniferous volcanic rocks of Malang Depression in Santanghu Basin in Xinjiang as an example[J]. Journal of Northeast Petroleum University, 2021, 45(6): 41-51, 79. [本文引用:2]
[26] 刘德成, 陈亚军, 伍宏美, . 火山岩陆上与水下喷发沉积环境的地球化学判识方法研究[J]. 地质科学, 2022, 57(3): 809-834.
Liu D C, Chen Y J, Wu H M, et al. Geochemistry discriminance study of subaerial and underwater eruptive depositional environment of volcanic rocks[J]. Chinese Journal of Geology, 2022, 57(3): 809-834. [本文引用:2]
[27] Vogt T. Sulitjelmafeltets geologiog petrografi[J]. Norges Geologiske Undersokelse, 1927, 121: 1-560. [本文引用:1]
[28] Jenny H. Factors of Soil Formation: A System of Quantitative Pedology[M]. New York: McGraw-Hill, 1941. [本文引用:1]
[29] Reiche P. Graphic representation of chemical weathering[J]. Journal of Sedimentary Petrology, 1943, 13(2): 58-68. [本文引用:3]
[30] Ruxton B P. Measures of the degree of chemical weathering of rocks[J]. Journal of Geology, 1968, 76(5): 518-527. [本文引用:1]
[31] Parker A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504. [本文引用:3]
[32] Coleman S M. Chemical Weathering of Basalts and Andeites, Evidence from Weathering Rinds[M]. U. S. Geological Survey Professional Paper, 1982. [本文引用:3]
[33] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. [本文引用:3]
[34] Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322. [本文引用:3]
[35] de S. Jayawardena U, Izawa E. A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka[J]. Engineering Geology, 1994, 36(3/4): 303-310. [本文引用:1]
[36] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. [本文引用:1]
[37] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. [本文引用:1]
[38] Voicu G, Bardoux M, Voicu D. Mineralogical norm calculations applied to tropical weathering profiles[J]. Mineralogical Magazine, 1997, 61(405): 185-196. [本文引用:3]
[39] Irfan T Y. Characterization of weathered volcanic rocks in Hong Kong[J]. Quarterly Journal of Engineering Geology and Hydro-geology, 1999, 32(4): 317-348. [本文引用:3]
[40] Irfan T Y. Mineralogy, fabric properties and classification of weathered granites in Hong Kong[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1996, 29(1): 5-35. [本文引用:3]
[41] Price J R, Velbel M A. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks[J]. Chemical Geology, 2003, 202(3/4): 397-416. [本文引用:3]
[42] Ohta T, Arai H. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering[J]. Chemical Geology, 2007, 240(3/4): 280-297. [本文引用:3]
[43] Xiong S F, Ding Z L, Zhu Y J, et al. A~6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess-red clay deposit[J]. Quaternary Science Reviews, 2010, 29(15/16): 1911-1922. [本文引用:1]
[44] Gong Q J, Deng J, Wang C M, et al. Element behaviors due to rock weathering and its implication to geochemical anomaly recognition: A case study on Linglong biotite granite in Jiaodong peninsula, China[J]. Journal of Geochemical Exploration, 2013, 128: 14-24. [本文引用:3]
[45] 徐则民, 黄润秋. 基于结构体的峨眉山玄武岩风化程度评价(III)——既有风化指数评价[J]. 中国地质, 2013, 40(5): 1655-1665.
Xu Z M, Huang R Q. The assessment of the weathering intensity of Emeishan basalt based on rock blocks(III): assessment of existing chemical weathering indices[J]. Geology in China, 2013, 40(5): 1655-1665. [本文引用:3]
[46] Garzanti E, Padoan M, Setti M, et al. Provenance versus weathering control on the composition of tropical river mud (southern Africa)[J]. Chemical Geology, 2014, 366: 61-74. [本文引用:1]
[47] Zhao M Y, Zheng Y F. The intensity of chemical weathering: geochemical constraints from marine detrital sediments of Triassic age in south China[J]. Chemical Geology, 2015, 391: 111-122. [本文引用:1]
[48] 王卫东, 汤睿, 吴婕. 一种玄武岩风化程度的判别方法: 中国, 105717149B[P]. 2018-08-24.
Wang W D, Tang R, Wu J. A discrimination method for weathering degree of basalt: CN, 105717149B[P]. 2018-08-24. [本文引用:2]
[49] 王亚暐, 吴光. 成兰铁路绵竹—茂县段茂县群浅变质千枚岩风化指数研究[J]. 地球学报, 2018, 39(6): 749-761.
Wang Y W, Wu G. A study of phyllite weathering index of Silurian Maoxian Group along the Mianzhu-Maoxian Section of Chengdu-Lanzhou Railway[J]. Acta Geoscientica Sinica, 2018, 39(6): 749-761. [本文引用:2]
[50] 吴蓓娟, 彭渤, 张坤, . 黑色页岩化学风化程度指标研究[J]. 地质学报, 2016, 90(4): 818-832.
Wu B J, Peng B, Zhang K, et al. A new chemical index of identifying the weathering degree of black shales[J]. Acta Geologica Sinica, 2016, 90(4): 818-832. [本文引用:1]
[51] Duzgoren-Aydin N S, Aydin A, Malpas J. Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong[J]. Engineering Geology, 2002, 63(1/2): 99-119. [本文引用:1]
[52] 梁浩, 苟红光. 三塘湖盆地卡拉岗组火山岩岩石化学特征及构造环境[J]. 西安石油大学学报: 自然科学版, 2009, 24(5): 23-28, 35.
Liang H, Gou H G. Petrochemical characteristics and structural environment of the volcanic rock of Kalagang Formation in Santanghu Basin[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2009, 24(5): 23-28, 35. [本文引用:1]
[53] 伍宏美, 陈亚军, 孟朋飞, . 火山岩陆上与水下喷发环境的氧化系数判别方法[J]. 沉积学报, 2022, 40(3): 599-615.
Wu H M, Chen Y J, Meng P F, et al. Discrimination methodof oxidation index of volcanic rock in land and underwater eruption environments[J]. Acta Sedimentologica Sinica, 2022, 40(3): 599-615. [本文引用:1]
[54] 于家义, 陈亚军, 何伯斌, . 基于火山岩氧化系数分布特征的火山喷发环境判识——以三塘湖盆地马朗凹陷牛圈湖—牛东构造带上石炭统为例[J]. 地质学报, 2021, 95(12): 3721-3738.
Yu J Y, Chen Y J, He B B, et al. Identification of volcanic eruption environment based on the volcanicrock oxidation index: A case study from Upper Carboniferousigneous rocks in the Malang sag of Santanghu basin[J]. Acta Geologica Sinica, 2021, 95(12): 3721-3738. [本文引用:1]
[55] Matthews D H. Altered basalts from Swallow Bank, an abyssal hill in the NE Atlantic, and from a nearby seamount[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1971, 268(1192): 551-571. [本文引用:2]
[56] Le Maitre R W. The chemical variability of some common igneous rocks[J]. Journal of Petrology, 1976, 17(4): 589-598. [本文引用:2]
[57] 黄剑霞. 厦门港湾氧化-还原沉积环境的划分[J]. 台湾海峡, 1987, 6(1): 27-32.
Huang J X. Differentiation of oxidation-reduction sedimentary environment of the Xiamen Harbour[J]. Journal of Oceanography in Taiwan Strait, 1987, 6(1): 27-32. [本文引用:2]
[58] 单玄龙, 李吉焱, 陈树民, . 陆相水下火山喷发作用及其对优质烃源岩形成的影响: 以松辽盆地徐家围子断陷营城组为例[J]. 中国科学: 地球科学, 2014, 44(12): 2637-2644.
Shan X L, Li J Y, Chen S M, et al. Subaquatic volcanic eruptions in continental facies and their influence on high quality source rocks shown by the volcanic rocks of a faulted depression in Northeast China[J]. Science China Earth Sciences, 2013, 56(11): 1926-1933. [本文引用:2]
[59] 何衍鑫, 鲜本忠, 牛花朋, . 基于氧化系数的火山喷发环境判别: 以准噶尔盆地西北缘下二叠统为例[J]. 高校地质学报, 2017, 23(4): 737-749.
He Y X, Xian B Z, Niu H P, et al. Discrimination of volcanic eruption environment using oxidation index: A case study of lower Permian volcanic rocks in northwestern margin of Junggar Basin[J]. Geological Journal of China Universities, 2017, 23(4): 737-749. [本文引用:1]
[60] 郭靖. 黔西玄武岩地区滑坡易发性评价及玄武岩风化程度判别研究[D]. 长沙: 中南大学, 2012.
Guo J. Land slide Susceptibility Assessment and Evaluation of Weathering Intensity of Basalt in Western Guizhou[D]. Changsha: Central South University, 2012. [本文引用:4]