Abstract:Through the comprehensive research on major elements, trace elements and rare earth elements of the clastic rocks in Upper Triassic Baiguowan Formation of Xichang Basin Sichuan Province, this research found that the major elements are rich in SiO2, CaO and P2O5 , and lack of Al2O3, TFe2O3, MgO, Na2O and K2O. The trace elements are rich in Zr, Cs, Th and U. The capacity of rare earth elements are relatively higher. The fractionation of light and heavy rare earth elements is obvious. The light rare earth elements is richer than the heavy ones, and have medium negative europium anomaly. The provenance of Baiguowan Formation in Xichang Basin is felsic rocks and passive continental margin area. The climate period experienced the process from humid to arid and to humid and arid again. Compositional maturity of Baiguowan Formation rocks is generally low, and shows the variation from high to low, and to high and low again. The variation is negatively correlated with chemical alteration index(CIA). This paper provides basic data for the study of environmental evolution of Late Triassic.
[1] Cullers R L,Basu A,Suttner L J.Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith,Montana,U.S.A.[J].Chem Geol,1988,70(4):335-348. [2] Bhatia M R,Crook K A.Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J].Contribut Mineral Petrol,1986,92(2):181-193. [3] Taylor S R,McLennan S M.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell Scientific Publications,1985. [4] Mclennan S M,Hemming S,Mcdaniel D K,et al.Geochemical approaches to sedimentation,provenance,and tectonics[J].Spec Pap Geol Soc Am,1993,284:21-40. [5] 白宪洲,何明友,王玉婷,等.四川若尔盖地区西康群地球化学特征及其物源区和古风化程度分析[J].现代地质,2010,24(1):151-157. [6] Mclennan S M.Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes[J].Rev Mineral Geochem,1989,21(8):169-200. [7] Condie K C.Chemical composition and evolution of the upper continental crust:Contrasting results from surface samples and shales[J].Chem Geol,1993,104(1/4):1-37. [8] 唐勇,覃建雄.四川西昌盆地三叠系沉积环境分析[J].四川地质学报,2007,27(2):92-95. [9] 覃建雄,张长俊,徐国盛.西昌盆地上三叠统白果湾组砂岩储层次生孔隙成因探讨[J].中国海上油气:地质,1996(2):83-89. [10] 文龙,项茜,刘埃平,等.西昌盆地上三叠统白果湾组古油藏痕迹研究[J].天然气勘探与开发,2008,31(3):6-9. [11] 王运生,李云岗.西昌盆地的形成与演化[J].成都理工学院学报,1996(1):85-90. [12] Wronkiewicz D J,Condie K C.Geochemistry of Archean shales from the Witwatersrand Supergroup,South Africa:Source-area weathering and provenance[J].Geochim Cosmochim Acta,1987,51(9):2401-2416. [13] Cox R,Lowe D R,Cullers R L.The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J].Geochim Cosmochim Acta,1995,59(14):2919-2940. [14] Girty G H,Ridge D L,Knaack C,et al.Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nevada,California[J].J Sediment Res,1996,66(1):107-118. [15] 李志红,罗照华,陈岳龙,等.康定—泸定地区变质侵入岩的地质地球化学特征及其构造环境[J].现代地质,2008,22(2):181-189. [16] 覃小锋,夏斌,黎春泉,等.阿尔金构造带西段前寒武纪花岗质片麻岩的地球化学特征及其构造背景[J].现代地质,2008,22(1):34-44. [17] Bhatia M R.Plate Tectonics and Geochemical Composition of Sandstones[J].J Geol,1983,91(6):611-626. [18] Bhatia M R,Taylor S R.Trace-element geochemistry and sedimentary provinces:A study from the Tasman Geosyncline,Australia[J].Chem Geol,1981,33(1-4):115-125. [19] 胡健民,孟庆任,石玉若,等.松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义[J].岩石学报,2005,21(3):867-880. [20] Nesbitt H W,Young G M.Early proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299(5885):715-717. [21] 顾雪祥,刘建明,Schulz O,等.扬子地块南缘元古代浊积岩源区风化特征和源岩性质的沉积地球化学记录[J].成都理工大学学报:自然科学版,2003,30(3):221-235. [22] 武昱东,王宗起,罗金海,等.川西南甘洛地区中—新生代构造沉降史分析及对铅锌保存的约束[J].地质学报,2015,89(8):1471-1483. [23] 程立雪.川东北晚三叠世—侏罗纪盆缘造山隆升作用的沉积响应[D].成都:成都理工大学,2014.