Geological characteristics and prospecting potential of Xinlong gold deposit in the central section of Middle Lhasa block of Tibet
DI Mengxiang1, CHEN Wei2, ZHAI Degao1, LIU Qingping1, YU Jiajia2, WANG Yankai3, LUO Long4, WU Wenxian4, BAI Chao4
1. School of Earth Science and Resource, China University of Geosciences (Beijing), Beijing 100083, China; 2. MNR Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 3. Regional Geological Survey Institute of Hebei Province, Hebei Langfang 065000, China; 4. China Geological Survey Military-Civilian Integration Geological Survey Center, Sichuan Chengdu 610036, China
Abstract:Xinlong gold deposit in Middle Lhasa block of Tibet has great prospecting potential. Through mineral geological survey and preliminary drilling verification, three ore bodies were delineated, which are controlled by the NNW and NNW fault structures. These three ore bodies exist in rhyolitic breccia lava, and the Au-II gold belt are 300~1 000 m long and up to 10 m thick, with single engineering grade of 17.97g/t. It is predicted that the ore body of Xinlong gold deposit can reach large scale, and the whole mining area is expected to reach super large scale. The output of gold is divided into two types, that is galena + arsenonickel + gold combination and pyrite+ quartz + gold combination. The alteration in the mining area is mainly dominated by silicification and medium to high grade argillation. According to the characteristics of mineralization and alteration, it is considered that Xinlong gold deposit is a high sulfide epigenetic type gold deposit, which is the first gold deposit of this type in continental volcanic rocks in Tibet. According to the comprehensive geological analysis, there is a complete porphyry-epithermal type Cu-Au metallogenic system in Xinlong-Langmeila area, which has great prospecting potential. The discovery of Xinlong gold deposit could open up a new direction for the exploration in the northern Tibet gold deposit.
[1] 杜光树,冯孝良,陈福忠,等.西藏金矿地质[M].成都:西南交通大学出版社,1993. Du G S,Feng X L,Chen F Z,et al.The Geology of the Gold Deposits in Xizang[M].Chengdu:Southwest Jiaotong University Press,1993. [2] 李光明,曾庆贵,雍永源,等.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义——以西藏弄如日金锑矿床为例[J].矿床地质,2005,24(6):595-602. Li G M,Zeng Q G,Yong Y Y,et al.Discovery of epithermal Au-Sb deposits in Gangdese metallogenic belt of Tibet and its significance:A case study of Longruri Au-Sb deposit[J].Mineral Deposits,2005,24(6):595-602. [3] 陈伟,宋扬,刘青枰,等.西藏班公湖—怒江成矿带南缘鑫龙金矿的发现及意义[J].矿床地质,2022,41(6):1245-1257. Chen W,Song Y,Liu Q P,et al.Discovery and significance of Xinlong gold deposit in southern margin of Bangonghu-Nujiang metallogenic belt[J].Mineral Deposits,2022,41(6):1245-1257. [4] 黄瀚霄,李光明,刘波,等.藏北商旭造山型金矿床的发现及意义[J].矿床地质,2014,33(3):486-496. Huang H X,Li G M,Liu B,et al.Discovery of Shangxu orogenic type gold deposit in northern Tibet and its significance[J].Mineral Deposits,2014,33(3):486-496. [5] 马忠胜,冯立.西藏尼玛县达查金矿地质特征及成矿规律研究[J].西部探矿工程,2014,26(8):116-119,124. Ma Z S,Feng L.Study on geological characteristics and metallogenic regularity of Dacha gold deposit in Nyima County,Tibet[J].West-China Exploration Engineering,2014,26(8):116-119,124. [6] Fang X,Tang J X,Song Y,et al.Genesis of the Shangxu orogenic gold deposit,Bangong-Nujiang suture belt,central Tibet,China:constraints from H,O,C,Si,He and Ar isotopes[J].Ore Geology Reviews,2020,127:103810. [7] Fang X,Tang J X,Beaudoin G,et al.Geology,mineralogy and geochemistry of the Shangxu orogenic gold deposit,central Tibet,China:Implications for mineral exploration[J].Ore Geology Reviews,2020,120:103440. [8] 黄瀚霄,李光明,刘波,等.西藏仲巴县天宫尼勒矽卡岩型铜金矿床锆石U-Pb年代学和岩石地球化学特征:对成因及其成矿构造背景的指示[J].地球学报,2012,33(4):424-434. Huang H X,Li G M,Liu B,et al.Zircon U-Pb Geochronology and Geochemistry of the Tiangongnile Skarn-type Cu-Au Deposit in Zhongba County,Tibet:Their Genetic and Tectonic Setting Significance[J].Acta Geoscientica Sinica,2012,33(4):424-434. [9] 刘洪,李光明,李文昌,等.西藏布东拉金矿床浅成低温热液成矿作用:来自流体包裹体和H-O同位素的证据[J].矿床地质,2021,40(2):311-328. Liu H,Li G M,Li W C,et al.Epithermal mineralization at Budongla gold deposit in Zhongba County of Tibet:Evidence from fluid inclusions and H-O isotopes[J].Mineral Deposits,2021,40(2):311-328. [10] 邢香粉,郝瑞娥,石洪召,等.中冈底斯布东拉金矿床地质特征、控矿因素和找矿标志[J].化工矿产地质,2016,38(1):21-26. Xing X F,Hao R E,Shi H Z,et al.The Geological features,prospecting factors and symbols of Boudon's goldern deposit,middle gangdese[J].Geology of Chemical Minerals,2016,38(1):21-26. [11] 王春宏,葛良胜,郭晓东.西藏崩纳藏布砂金矿中金的来源研究[J].黄金科学技术,2006,14(6):1-12. Wang C H,Ge L S,Guo X D,et al.Research on the source of Au in Bengnazangbu placer gold deposit,Tibet[J].Gold Science and Technology,2006,14(6):1-12. [12] Lalomov A V,Chefranov R M,Naumov V A,et al.Typomorphic features of placer gold of Vagran cluster (the Northern Urals) and search indicators for primary bedrock gold deposits[J].Ore Geology Reviews,2017,85:321-335. [13] 唐菊兴,王勤,杨欢欢,等.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J].地球学报,2017,38(5):571-613. Tang J X,Wang Q,Yang H H,et al.Mineralization,exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet[J].Acta Geoscientica Sinica,2017,38(5):571-613. [14] Chen W,Song Y,Liu Q P,et al.The first discovery of Xinlong epithermal gold deposit in southern margin of the Bangonghu-Nujiang metallogenic belt:A new expansion of gold prospecting in Northern Tibet[J].China Geology,2023,6(2):241-251. [15] Liu Q P,Chen W,Tang J X,et al.Identifying high potential gold mineralization using geological and stream sediment geochemical data:A case study from western Dangreyongcuo area in the Central Lhasa terrane,Tibet,China[J].Journal of Geochemical Exploration,2024,261:107454. [16] Zhu D C,Mo X X,Niu Y L,et al.Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane,Tibet[J].Chemical Geology,2009,268(3/4):298-312. [17] Liu Z C,Ding L,Zhang L Y,et al.Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba Formation) in the Gangdese arc,southern Tibet:implications for the Neo-Tethyan subduction[J].Lithos,2018,312-313:72-88. [18] Yin A,Harrison T M.Geologic evolution of the Himalayan-Tibetan orogen[J].Annual Review of Earth and Planetary Sciences,2000,28(1):211-280. [19] 陈伟,刘腾飞,张建珍,等.中华人民共和国来多乡幅、鑫龙幅(H45E005010,H45E005011)1:50 000矿产地质调查报告[R].2022. Chen W,Liu T F,Zhang J Z,et al.People's Republic of China Laidu Township,Xinlong (H45E005010,H45E005011) 1:50,000 mineral geological survey report[R].2022. [20] 刘家军,翟德高,王大钊,等.Au-(Ag)-Te-Se成矿系统与成矿作用[J].地学前缘,2020,27(2):79-98. Liu J J,Zhai D G,Wang D Z,et al.Classification and mineralization of the Au-(Ag)-Te-Se deposits[J].Earth Science Frontiers,2020,27(2):79-98. [21] Nekrasov I Y,Lunin S E.Conditions for the formation of silver sulfides,selenides and sulfoselenides of the Ag-Sb-S-Se system; (according to experimental data)[J].Mineralogicheskiy Zhurnal,1987,9(1):25-39. [22] Hedenquist J W,Arribas R A,Gonzalez-Urien E.Exploration for epithermal gold deposits[M]//Hagemann S G,Brown P E.Reviews in Economic Geology.Society of Economic Geologists,2000:245-277. [23] 江思宏,聂凤军,张义,等.浅成低温热液型金矿床研究最新进展[J].地学前缘,2004,11(2):401-411. Jiang S H,Nie F J,Zhang Y,et al.The latest advances in the research of Epithermal deposits[J].Earth Science Frontiers,2004,11(2):401-411. [24] Arribas Jr A,Hedenquist J W,Itaya T,et al.Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon,Philippines[J].Geology,1995,23(4):337-340.