Abstract:The characteristics of alteration zoning can indicate the hydrothermal alteration activities associated with porphyry deposits, making it the important prospecting indicators for porphyry deposits. Based on fine spectral resolution, the hyperspectral remote sensing data can accurately delineate the spatial distribution of various hydrothermally altered minerals, providing reliable basis for the identification and localization of porphyry deposits. Based on the Teracorder algorithm framework, the authors developed and made open-source of GeoAHSI, a mineral identification tool for domestic hyperspectral remote sensing satellite imagery, to achieve convenient and efficient batch processing and mineral mapping engineering applications of domestic hyperspectral remote sensing satellite imagery. Based on the research basis and field sampling analysis, the GF-5 AHSI (Advanced Hyperspectral Imager) imagery was used as remote sensing data source to carry out surface mineral mapping and verification work in Chihu copper-molybdenum mining area. The results show that AHSI hyperspectral mineral mapping accurately characterized the typical hydrothermal alteration zoning characteristics of porphyry deposits with pyrophyllite+alunite as the advanced argillic alteration core and gradually transitioning outward to kaolinite, pyrophyllite, muscovite and other altered mineral assemblages. Moreover, the mineral map had good spatial distribution consistency with traditional geological mapping units and structures. In addition, the GeoAHSI tool also extracted absorption characterization and wavelength distribution of muscovite in this area, and revealed the relationship between aluminum rich muscovite and porphyry mineralization in Chihu copper molybdenum deposit. The study provides a mature and effective tool and corresponding methods for the identification of alteration zoning for porphyry deposits, which could help promote the domestic hyperspectral remote sensing satellites’ utilities in the new round of mineral exploration breakthroughs.
李士杰, 刘小玉, 秦昊洋, 何海洋, 王思琪, 孙旭. GeoAHSI新工具精确刻画新疆哈密赤湖铜钼矿床蚀变分带特征[J]. 中国地质调查, 2024, 11(5): 55-65.
LI Shijie,LIU Xiaoyu,QIN Haoyang,HE Haiyang,WANG Siqi,SUN Xu. Accurate characterization of the alteration zoning in Chihu copper-molybdenum deposit by a new tool GeoAHSI in Hami area of Xinjiang. , 2024, 11(5): 55-65.
[1] Henderson F M,Lewis A J.Manual of Remote Sensing[M].3rd ed.New York:Wiley,1998. [2] Thompson A J B,Hauff P L,Robitaille A J. Alteration mapping in exploration:application of short-wave infrared (SWIR) spectroscopy[J].SEG Discovery,1999(39):1-27. [3] Ben-Dor E,Inbar Y,Chen Y.The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400~2 500 nm) during a controlled decomposition process[J].Remote Sensing of Environment,1997,61(1):1-15. [4] Clark R N,Swayze G A,Livo K E,et al.Imaging spectroscopy:Earth and planetary remote sensing with the USGS tetracorder and expert systems[J].Journal of Geophysical Research,2003,108(E12):5131. [5] Dalton J B,Bove D J,Mladinich C S.Remote Sensing Characterization of the Animas River Watershed,Southwestern Colorado,by AVIRIS Imaging Spectroscopy[R].Reston:USGS,2005. [6] Kokaly R F.Processing Routines in IDL for Spectroscopic Measurements (Installation Manual and User’s Guide,Version 1.0)[R].Reston:USGS,2011. [7] Swayze G A,Clark R N,Goetz A F H,et al.Mapping advanced argillic alteration at Cuprite,Nevada,using imaging spectroscopy[J].Economic Geology,2014,109(5):1179-1221. [8] Halley S,Dilles J H,Tosdal R M.Footprints:Hydrothermal alteration and geochemical dispersion around porphyry copper deposits[J].SEG Discovery,2015(100):1-17. [9] Kokaly R F,Clark R N,Swayze G A,et al.USGS Spectral Library Version 7[R].Reston:USGS,2017:1-61. [10] Hoefen T M,Finn C A,Bedrosian P A,et al.High-resolution imaging of Yellowstone’s geothermal system from micrometres to metres[J].Nature,2021,12(2):1-18. [11] 闫柏琨,董新丰,王喆,等.航空高光谱遥感矿物信息提取技术及其应用进展——以中国西部成矿带调查为例[J].中国地质调查,2016,3(4):55-62. Yan B K,Dong X F,Wang Z,et al.Mineral information extraction technology by airborne hyperspectral remote sensing and its application progress:An example of mineralization belts of western China[J].Geological Survey of China,2016,3(4):55-62. [12] 杜斌,董涛,董红国,等.蚀变矿物填图技术在斑岩型铜矿找矿勘查中的应用——以滇西北香格里拉松诺矿床为例[J].地质与勘探,2021,57(4):879-894. Du B,Dong T,Dong H G,et al.Application of alternation mineral mapping in porphyry copper deposits:A case study of the Songnuo deposit in the Shangrila region,Northwest Yunnan[J].Geology and Exploration,2021,57(4):879-894. [13] 翟建军.斑岩型铜矿找矿中围岩蚀变的应用[J].世界有色金属,2021(19):102,104. Zhai J J.Application of wall rock alteration in prospecting for porphyry copper deposits[J].World Nonferrous Metals,2021(19):102,104. [14] 董新丰,甘甫平,李娜,等.高分五号高光谱影像矿物精细识别[J].遥感学报,2020,24(4):454-464. Dong X F,Gan F P,Li N,et al.Fine mineral identification of GF-5 hyperspectral image[J].Journal of Remote Sensing (Chinese),2020,24(4):454-464. [15] 甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别[J].地学前缘,2003,10(2):445-454. Gan F P,Wang R S,Ma A N.Spectral identification tree(sit)for mineral extraction based on spectral characteristics of minerals[J].Earth Science Frontiers,2003,10(2):445-454. [16] 孙雨,刘家军,翟德高,等.基于资源一号02D卫星高光谱数据的甘肃头吊泉—南大滩地区蚀变矿物填图及金矿化带识别[J].地质与勘探,2022,58(2):399-409. Sun Y,Liu J J,Zhai D G,et al.Alteration minerals mapping and identification of gold mineralization belt based on ZY1-02 D hyper-spectral data in the Toudiaoquan-Nandatan area,Gansu province[J].Geology and Exploration,2022,58(2):399-409. [17] 任广利,杨军录,杨敏,等.高光谱遥感异常提取在甘肃北山金滩子—明金沟地区成矿预测中的应用[J].大地构造与成矿学,2013,37(4):765-776. Ren G L,Yang J L,Yang M,et al.Application of hyperspectral remote sensing anomaly information on metallogenic prediction in the Jintanzi-Mingjingou area of Beishan,Gansu[J].Geotectonica et Metallogenia,2013,37(4):765-776. [18] Livo K E,Clark R N.The Tetracorder User Guide:Version 4.4[R].Reston:USGS,2014. [19] Clark R N,Swayze G A,Wise R A,et al.USGS Digital Spectral Library Splib06a[R].Reston:USGS,2007. [20] 徐大兴,杨彪,邵兆刚,等.哈达门沟金矿蚀变分带的高光谱分析及找矿意义[J].自然资源遥感,2023,35(1):123-131. Xu D X,Yang B,Shao Z G,et al.A hyperspectral analysis of alteration zoning in the Hadamengou gold deposit and its significance for ore prospecting[J].Remote Sensing for Natural Resources,2023,35(1):123-131. [21] 纪宏伟,孙敬博.新疆哈密地区赤湖铜钼矿床特征和成矿时代探讨[J].矿物学报,2011,31(增刊1):595-596. Ji H W,Sun J B.Characteristics and metallogenic era of the Chihu copper molybdenum deposit in Hami,Xinjiang[J].Acta Mineralogica Sinica,2011,31(S1):595-596. [22] 龚林,陈华勇,肖兵,等.新疆赤湖—福兴铜矿区角闪石矿物化学特征及其地质意义[J].地球化学,2018,47(2):149-168. Gong L,Chen H Y,Xiao B,et al.Mineral chemistry of hornblende in the Chihu-Fuxing copper district,Xinjiang,and its geological significance[J].Geochimica,2018,47(2):149-168. [23] Harraden C A.Shortwave infrared spectral analysis of hydrothermal alteration associated with the pebble porphyry copper-gold-molybdenum Deposit,Iliamna,Alaska[J].Remote Sensing of Environment,2013,133(1):210-220. [24] van der Meer F D,van der Werff H M A,van Ruitenbeek F J A.Potential of ESA’s sentinel-2 for geological applications[J].Remote Sensing of Environment,2014,148:124-133. [25] Yang K,Huntington J F,Gemmell J B,et al.Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer,Tasmania,as revealed by infrared reflectance spectroscopy[J].Journal of Geochemical Exploration,2011,108(2):143-156. [26] 陈富文,李华芹,陈毓川,等.东天山土屋—延东斑岩铜矿田成岩时代精确测定及其地质意义[J].地质学报,2005,79(2):256-261. Chen F W,Li H Q,Chen Y C,et al.Zircon SHRIMP U-Pb dating and its geological significance of mineralization in Tuwu-Yandong porphyry copper mine,East Tianshan mountain[J].Acta Geologica Sinica,2005,79(2):256-261. [27] 韩志轩. 新疆东天山土屋—延东斑岩铜矿带地球化学特征及戈壁荒漠覆盖区化探方法研究[D].武汉:中国地质大学,2012. Han Z X.Geochemical characteristics of Tuwu-Yandongporphyry Copper Ore Belt in Eastern Tianshan,Xinjiang and Study on Geochemical Exploration in Gobi Desert Regions[D].Wuhan:China University of Geosciences,2012. [28] 胡兆鑫. 安徽马头斑岩型钼铜矿异常结构模式研究[D].北京:中国地质科学院,2014. Hu Z X.A Study of Anomaly Structure Model of Matou Porphyry Mo-Cu Deposit,Anhui Province[D].Beijing:Chinese Academy of Geological Sciences,2014. [29] 李智明,赵仁夫,霍瑞平,等.新疆土屋—延东铜矿田地质特征[J].地质与勘探,2006,42(6):1-4. Li Z M,Zhao R F,Huo R P,et al.Geological characters of Tuwu-Yandong copper deposit in Xinjiang[J].Geology and Exploration,2006,42(6):1-4. [30] 芮宗瑶,王龙生,王义天,等.东天山土屋和延东斑岩铜矿床时代讨论[J].矿床地质,2002,21(1):16-22. Rui Z Y,Wang L S,Wang Y T,et al.Discussion on metallogenic epoch of Tuwu and Yandong porphyry copper deposits in Eastern Tianshan Mountains,Xinjiang[J].Mineral Deposits,2002,21(1):16-22. [31] 彭方洪,莫新华,贺静,等.赤湖—土墩地区地球化学找矿效果[J].新疆地质,2001,19(4):276-280. Peng F H,Me X H,He J,et al.Role of geochemistry in ore prospecting at chihu-tudong region of Eastern Tianshan[J].Xinjiang Geology,2001,19(4):276-280.