Indicative significance of spectral characteristics of silky fern leaves for moly-bdenum metal exploration in Fanshan copper-molybdenum deposit area
SHI Chao1, LI Shu1, WANG Xueping2
1. Changjiang Reconnaissance Technology Research Institute, Ministry of Water Resources, Hubei Wuhan 430011, China; 2. Faculty of Earth Resources, China University of Geosciences, Hubei Wuhan 430074, China
Abstract:In response to the remote sensing technology problems in mineral exploration in vegetation-covered areas, the authors proposed a new method of geological prospecting using remote sensing, taking advantage of the migration rules of metal elements and the spectral variation caused by metal stress on vegetation. The method is based on the principle of reflectance and absorption characteristics of leaf spectra of ferns, combined with geochemical data, to indirectly achieve remote sensing mapping of heavy metal element distribution. Silky fern samples and the corresponding spectral data were collected from the deposit area and the surrounding background area to determine molybdenum element content in silky fern leaves by chemical analysis. The silky fern leaves were confirmed to be affected by molybdenum elements, and the differences between silky fern leaves in the deposit area and those in the background area in terms of waveform, red edge position, chlorophyll and water absorption, and vegetation index were compared and analyzed. The results show that the fern leaves affected by molybdenum metal stress in the deposit area have obvious differences in spectral curves and absorption characteristics compared with those in the background area, especially at 970 nm water absorption feature. The research results could provide new ideas for the application of remote sensing technology in geological prospecting in vegetation-covered areas.
[1] 史超,张远龙,任正情,等.福建矾山Hyperion高光谱数据预处理及效果评价[J].地质科技情报,2014,33(1):199-204. Shi C,Zhang Y L,Ren Z Q,et al.Hyperion data preprocessing and assessment:An example from Fanshan,Fujian Province[J].Geological Science and Technology Information,2014,33(1):199-204. [2] 万余庆,谭克龙,周日平.高光谱遥感应用研究[M].北京:科学出版社,2006. Wan Y Q,Tan K L,Zhou R P.Research on the Application of Hyperspectral Remote Sensing[M].Beijing:Science Press,2006. [3] Clark R N,Swayze G A,Gallagher A.Mapping the mineralogy and lithology of canyonlands,Utah with imaging spectrometer data and the multiple spectral feature mapping algorithm[C]//Proceedings of Summaries of the Third Annual JPL Airborne Geosciences Workshop.Volume 1:AVIRIS Workshop.Pasadena,USA:JPL,1992:9-14. [4] Rockwell B W,Clark R N,Livo K E,et al.Preliminary materials mapping in the Park City region for the Utah USGS-EPA Imaging Spectroscopy Project using both high and low altitude AVIRIS data[C]//Proceedings of Summaries of the 8th Annual JPL Airborne Earth Science Workshop.Pasadena,USA:JPL,1999:365-375. [5] 徐元进. 面向找矿的高光谱遥感岩矿信息提取方法研究[D].武汉:中国地质大学,2009. Xu Y J.Research of Prospecting-oriented Approaches to Information Extraction of Rocks and Minerals Using Hyperspectral Remote Sensing Data[D].Wuhan:China University of Geosciences,2009. [6] 吕凤军,郝跃生,王娟,等.植被覆盖区高光谱蚀变矿物信息提取[J].吉林大学学报:地球科学版,2011,41(1):316-321. Lü F J,Hao Y S,Wang J,et al.Extraction of alteration mineral information based on hyperspectral data in vegetation covering field[J].Journal of Jilin University(Earth Science Edition),2011,41(1):316-321. [7] 陈圣波,刘彦丽,杨倩,等.植被覆盖区卫星高光谱遥感岩性分类[J].吉林大学学报:地球科学版,2012,42(6):1959-1965. Chen S B,Liu Y L,Yang Q,et al.Lithologic classification from hyperspectral data in dense vegetation cover area[J].Journal of Jilin University(Earth Science Edition),2012,42(6):1959-1965. [8] 高建阳. Hyperion高光谱数据在福建钟腾铜钼矿区的应用研究[J].国土资源遥感,2011,22(1):87-90. Gao J Y.The application of the hypeion hyper-spectral image to the Zhongteng Cu-Mo Deposit in Pinghe County of Fujian Province[J].Remote Sensing for Land & Resources,2011,22(1):87-90. [9] 李卓,颜翔锦,黄伟,等.遥感技术在黑龙江东宁地区植被覆盖区地质调查中的应用[J].地质与资源,2023,32(4):471-479. Li Z,Yan X J,Huang W,et al.Application of remote sensing technology in geological survey of vegetation-covered area in Dongning,Heilongjiang Province[J].Geology and Resources,2023,32(4):471-479. [10] 周传芳,陈卓,孙彦峰,等.遥感在大兴安岭森林覆盖区地质矿产调查中的应用——以黑龙江洛古河1:5万区域地质矿产调查工作为例[J].地质与资源,2022,31(5):632-641,613. Zhou C F,Chen Z,Sun Y F,et al.Remote sensing applied in geological and mineral survey in forest-covered area of Daxinganling Mountains:A case study of 1:50 000 regional geological and mineral survey in Luoguhe,Heilongjiang Province[J].Geology and Resources,2022,31(5):632-641,613. [11] 林敏. 遥感在大兴安岭牛汾台林场地区1:5万区调中的应用研究[J].地质与资源,2022,31(5):642-652,674. Lin M.Application of remote sensing in 1:50 000 regional geological survey of Niufentai forest farm in Daxinganling Mountains[J].Geology and Resources,2022,31(5):642-652,674. [12] 曹会,张廷秀,李雨柯,等.基于中、高分辨率遥感影像的羟基和铁染蚀变信息提取与成矿预测——以吉林市等六幅为例[J].地质与资源,2021,30(6):710-715,706. Cao H,Zhang T X,Li Y K,et al.Hydroxyl and iron-stained alteration information extraction and metallogenic prediction based on medium-high-resolution remote sensing images:A case study of six map sheets in Jilin City[J].Geology and Resources,2021,30(6):710-715,706. [13] 史超,黄超,李书,等.矾山铜钼矿区重金属与覆盖植被胁迫相关性光谱特征[J].地质科技通报,2020,39(3):202-210. Shi C,Huang C,Li S,et al.Spectral characteristics and correlation of heavy metal and vegetation cover stress in Fanshan copper-molybdenum[J].Bulletin of Geological Science and Technology,2020,39(3):202-210. [14] 林芬芳,陈祝炉,王珂,等.基于傅里叶变换红外光谱和siPLS-GA-PLS的水稻叶片氮素含量预测研究[J].红外与毫米波学报,2009,28(4):277-280. Lin F F,Chen Z L,Wang K,et al.Determination of nitrogen in rice leaf based on FTIR spectra and siPLS-GA-PLS algorithm[J].Journal of Infrared and Millimeter Waves,2009,28(4):277-280. [15] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000. Pu R L,Gong P.Hyperspectral Remote Sensing and Its Application[M].Beijing:Higher Education Press,2000. [16] Kokaly R F,Clark R N.Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption feature and stepwise multiple linear regression[J].Remote Sensing of Environment,1999,67(3):267-287. [17] 徐希孺. 遥感物理[M].北京:北京大学出版社,2005. Xu X R.Remote Sensing Physics[M].Beijing:Peking University Press,2005. [18] Broge N H,Leblanc E.Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J].Remote Sensing of Environment,2001,76(2):156-172. [19] Gitelson A,Merzlyak M N.Quantitative estimation of chlorophyll a using reflectance spectra:experiments with autumn chestnut and maple leaves[J].Journal of Photochemistry and Photobiology B:Biology,1994,22(3):247-252. [20] Apan A,Held A,Phinn S,et al.Formulation and assessment of narrow-band vegetation indices from EO-1 hyperion imagery for discriminating sugarcane disease[C]//Proceedings of 2003 Spatial Sciences Institute Conference:Spatial Knowledge Without Boundaries (SSC2003).Canberra,Australia:Spatial Sciences Institute,2003:1-13.