3D geological modeling based on joint interpretation of gravity, magnetism, electricity and seismicity: A case study of Nanling-Xuancheng ore district
GUO Dong1, DING Wenxiang1, LAN Xueyi1, TAO Long1, ZHANG Yuanyuan1, LU Sanming2
1. Geological Exploration Technology Institute of Anhui Province (Energy Exploration Center), Anhui Hefei, 230031, China;
2. Public Geological Survey Management Center of Anhui Province, Anhui Hefei 230088, China
Abstract:Nanling-Xuancheng ore district has recently emerged as the eighth significant metallogenic district within the Middle-Lower Yangtze River metallogenic belt. Due to the thick surface cover and relatively insufficient research on the deep geological structure, the complex fault systems and concealed intrusions have not yet been systematically modeled and analyzed in 3D model, which significantly restricts the understanding of metallogenic regularities and the progress of deep mineral exploration. To address this issue, the authors in this paper integrated multi-source geophysical data, including gravity, magnetism, electricity, and seismicity, along with the apriori information of borehole data and rock physical properties. And the implicit 3D geological-geophysical modeling approach was optimized to reveal the deep geological structure and provide effective technical support for deep prospecting. Through joint inversion and comprehensive modeling of multi-source data, this study established a 3D geological model of Nanling-Xuancheng ore district, which delineated the spatial distribution characteristics of fault networks, concealed intrusions, and ore-controlling strata in detail. The incorporation of multiple apriori information constraints and borehole information further improved the model's precision and reliability, significantly enhancing the interpretation ability of deep geological structures and metallogenic systems. The results revealed the spatial distribution regularities of ore-controlling factors and identified potential favorable mineralization zones. The findings suggest that there is a close metallogenic coupling relationship between deep magmatic activity and the primary fault systems in Nanling-Xuancheng ore district, and that several contact zones between the identified concealed intrusions and ore-controlling strata have promising mineralization potential.
郭冬, 丁文祥, 兰学毅, 陶龙, 张媛媛, 陆三明. 基于重磁电震综合解释的三维地质建模——以南陵—宣城矿集区为例[J]. 中国地质调查, 2024, 11(5): 139-152.
GUO Dong,DING Wenxiang,LAN Xueyi,TAO Long,ZHANG Yuanyuan,LU Sanming. 3D geological modeling based on joint interpretation of gravity, magnetism, electricity and seismicity: A case study of Nanling-Xuancheng ore district. , 2024, 11(5): 139-152.
[1] 陈毓川,毛景文.加大矿业开发科技投入国内找矿大有可为[J].中国科技产业,2022(8):6-10.
Chen Y C,Mao J W.Increase investment in mining development technology,domestic prospecting promising[J].Science & Technology Industry of China,2022(8):6-10.
[2] 吕庆田,孟贵祥,严加永,等.成矿系统的多尺度探测:概念与进展——以长江中下游成矿带为例[J].中国地质,2019,46(4):673-689.
Lv Q T,Meng G X,Yan J Y,et al.Multi-scale exploration of mineral system:Concept and progress-a case study in the middle and lower reaches of the Yangtze River Metallogenic Belt[J].Geology in China,2019,46(4):673-689.
[3] 钱仕龙,杨前国,谢祖军,等.安徽省宣州区茶亭斑岩型铜(金)矿床地质特征及成矿条件探讨[J].安徽地质,2017,27(2):81-86.
Qian S L,Yang Q G,Xie Z J,et al.Geological features and a discussion of ore-forming conditions of the Chating porphyry copper (gold) ore deposit in the Xuanzhou district,Anhui Province[J].Geology of Anhui,2017,27(2):81-86.
[4] 王静,张达玉,黄家龙,等.安徽宣城矿集区长山铅锌多金属矿床成矿流体特征及成因[J].矿床地质,2023,42(4):791-810.
Wang J,Zhang D Y,Huang J L,et al.Characteristics and genesis of ore-forming fluid of Changshan Pb-Zn polymetallic deposit in Xuancheng ore district,Anhui Province[J].Mineral Deposits,2023,42(4):791-810.
[5] 卞育才. 皖南麻姑山铜钼矿床成因初探[J].江苏地质,1995(1):17-20.
Bian Y C.On the origin of Magushan Cu-Mo deposit in southern Anhui[J].Geology of Jiangsu,1995(1):17-20.
[6] 周涛发,范裕,王世伟,等.长江中下游成矿带成矿规律和成矿模式[J].岩石学报,2017,33(11):3353-3372.
Zhou T F,Fan Y,Wang S W,et al.Metallogenic regularity and metallogenic model of the Middle-Lower Yangtze River Valley Metallogenic Belt[J].Acta Petrologica Sinica,2017,33(11):3353-3372.
[7] 陈安国,周涛发,刘东甲,等.长江中下游成矿带宣城矿集区重磁场特征与找矿启示[J].矿床地质,2020,39(5):879-892.
Chen A G,Zhou T F,Liu D J,et al.Gravity and magnetic characteristics of Xuancheng ore concentration area along Middle-Lower Yangtze River Valley metallogenic belt:implications to ore prospecting[J].Mineral Deposits,2020,39(5):879-892.
[8] 张昆,吕庆田,满祖辉,等.长江中下游成矿带岩浆-成矿系统深部背景和过程的电性结构约束[J].岩石学报,2022,38(2):573-583.
Zhang K,Lv Q T,Man Z H,et al.Electrical constraints on the deep setting and process of magma-mineral system in the Middle-Lower Reaches of Yangtze Metallogenic Belt[J].Acta Petrologica Sinica,2022,38(2):573-583.
[9] 洪大军,宋世明,张旭,等.安徽宣城茶亭铜金矿区外围找矿潜力分析[J].中国地质调查,2022,9(3):23-31.
Hong D J,Song S M,Zhang X,et al.Analysis of mineral prospecting potential in the periphery of Chating copper-gold mining area in Xuancheng City of Anhui Province[J].Geological Survey of China,2022,9(3):23-31.
[10] 胡召齐,杜建国,谢祖军,等.安徽宣城矿集区控矿构造特征及其深部找矿指示意义[J].安徽地质,2024,34(2):97-100,119.
Hu Z Q,Du J G,Xie Z J,et al.Characteristics of ore-controlling structures and their implications for deep ore prospecting in the Xuancheng ore concentration area,Anhui[J].Geology of Anhui,2024,34(2):97-100,119.
[11] 徐晓春,金林森,许心悦,等.长江中下游成矿带南陵—宣城矿集区中生代构造-岩浆-成矿特征及其地质意义[J].地质论评,2024,70(5):1639-1659.
Xu X C,Jin L S,Xu X Y,et al.Mesozoic tectonic-magmatic-metallogenic characteristics of the Nanling-Xuancheng ore concentration district,Middle-Lower Yangtze Metallogenic Belt,and their geological significance[J].Geological Review,2024,70(5):1639-1659.
[12] 周宇章,王勇生,曹亮,等.南陵—宣城地区晚中生代构造应力场及其地质意义[J].合肥工业大学学报(自然科学版),2021,44(5):672-678.
Zhou Y Z,Wang Y S,Cao L,et al.Tectonic stress field of Late Mesozoic in Nanling-Xuancheng area and its geological significance[J].Journal of Hefei University of Technology (Natural Science),2021,44(5):672-678.
[13] 肖庆玲. 安徽宣城茶亭铜金矿床成矿作用研究[D].合肥:合肥工业大学,2021.
Xiao Q L.Mineralization of the Chating Copper and Gold Deposit in Xuancheng Ore District,Anhui[D].Hefei:Hefei University of Technology,2021.
[14] Lu S M,Lan X Y,Zhao L L,et al.A 3D Investigation of geological structure and its relationship to mineralization in the Nanling-Xuancheng ore district,middle-lower Yangtze River Metallogenic Belt,China[J].Journal of Earth Science,2022,33(3):664-680.
[15] 陈建平,于淼,于萍萍,等.重点成矿带大中比例尺三维地质建模方法与实践[J].地质学报,2014,88(6):1187-1195.
Chen J P,Yu M,Yu P P,et al.Method and practice of 3D geological modeling at key metallogenic belt with large and medium scale[J].Acta Geologica Sinica,2014,88(6):1187-1195.
[16] 周永章,左仁广,刘刚,等.数学地球科学跨越发展的十年:大数据、人工智能算法正在改变地质学[J].矿物岩石地球化学通报,2021,40(3):556-573,777.
Zhou Y Z,Zuo R G,Liu G,et al.The great-leap-forward development of mathematical geoscience during 2010-2019:big data and artificial intelligence algorithm are changing mathematical geoscience[J].Bulletin of Mineralogy,Petrology and Geochemistry,2021,40(3):556-573,777.
[17] 任政勇,王祥,汤井田,等.融合复杂地质信息的地球物理模型建模技术[J].地球物理学报,2022,65(10):3986-3996.
Ren Z Y,Wang X,Tang J T,et al.A technique for constructing geophysical model from complex geological information[J].Chinese Journal of Geophysics,2022,65(10):3986-3996.
[18] Wellmann F,Caumon G.3-D structural geological models:concepts,methods,and uncertainties[M]//Cedric S.Advances in Geophysics.Amsterdam:Elsevier,2018:1-121.
[19] Mueller C O,Wächter J,Jahnke C,et al.Integrated geological and gravity modelling to improve 3-D model harmonization-methods and benefits for the Saxony-Anhalt/Brandenburg cross-border region (North German Basin)[J].Geophysical Journal International,2021,227(2):1295-1321.
[20] 周文月,严加永,陈昌昕.多尺度地球物理与成矿系统探测:现状与进展[J].地球物理学进展,2021,36(3):1208-1225.
Zhou W Y,Yan J Y,Chen C X.Multiscale geophysics and mineral system detection:status and progress[J].Progress in Geophysics,2021,36(3):1208-1225.
[21] 吕庆田,孟贵祥,严加永,等.长江中下游成矿带铁-铜成矿系统结构的地球物理探测:综合分析[J].地学前缘,2020,27(2):232-253.
Lv Q T,Meng G X,Yan J Y,et al.The geophysical exploration of Mesozoic iron-copper mineral system in the Middle and Lower Reaches of the Yangtze River Metallogenic Belt:a synthesis[J].Earth Science Frontiers,2020,27(2):232-253.
[22] 常印佛,李加好,宋传中.长江中下游成矿带区域构造格局的新认识[J].岩石学报,2019,35(12):3579-3591.
Chang Y F,Li J H,Song C Z.The regional tectonic framework and some new understandings of the Middle-Lower Yangtze River Valley Metallogenic Belt[J].Acta Petrologica Sinica,2019,35(12):3579-3591.
[23] 宋传中,李加好,李海龙,等.再论长江中下游转换构造结——基于结构、属性、过程与动力学的思考[J].地质科学,2019,54(3):645-663.
Song C Z,Li J H,Li H L,et al.Further discuss on the middle and lower reaches of the Yangtze River transitional tectonic node:Thinking based on structures,properties,process and dynamics[J].Chinese Journal of Geology,2019,54(3):645-663.
[24] You M,Guo D,Lan X Y,et al.3-D Magnetotelluric resistivity imaging of Nanling-Xuancheng Ore concentration area[J].IEEE Access,2021,9:68332-68342.
[25] 王显莹,汤井田,张林成,等.长江中下游成矿带中段岩石圈电性结构研究[J].地球物理学报,2015,58(12):4403-4414.
Wang X Y,Tang J T,Zhang L C,et al.Lithospheric electrical structure in the middle and lower reach of Yangtze River metallogenic belt inferred from magnetotelluric sounding[J].Chinese Journal of Geophysics,2015,58(12):4403-4414.
[26] Guo D,Lan X Y,Lu S M,et al.Deep structure of Nanling-Xuancheng ore district,eastern China:insights from integrated geophysical exploration[J].Minerals,2023,13(12):1498.