Abstract:Qian’echong Mo-Pb-Zn deposit is located in the Mo polymetallic metallogenic belt of East Qinling-Dabie Mountain, and the orebodies mainly occurred in the external contact of the concealed granite. The metallogenic model was proposed through analysis of the mineralization geological process, geochemical characteristics of metallogenic rocks, ore-controlling factors and wall-rock lithology in Qian’echong Mo-Pb-Zn deposit, based on previous data and exploration results. It is concluded that the lattice structures in Dabie Mountain controls the distribution of orogenic belt, and has decisive effect on the distribution and formation of molybdenum ore deposits. The metallogenic geological body, with geochemical characteristics of high silicon, high-potassic, high alkali, is beneficial for the molybdenum mineralization. And the metallogenic geological body is depleted in Ba,Nb,Ta, Y, and Yb, and enriched in large ion lithophile element of Rb, Th and K. The low contents of Sr and Y reflect a high degree of magmatic differentiation. The surrounding rock physical property of porphyry molybdenum deposit shows a certain restriction on the location of molybdenum ore-formation zone. The metallogenic model of Qian'echong Mo-Pb-Zn deposit is the magma rocks remelting in the lower crust from Paleoproterozoic Dabie high-pressure granulite. The condensed magma was activated to the upward migration when it has been heated under Mesozoic tectonic regime transition of East China. Under different precipitation mechanisms of pressure and temperature reduction and pH change, the ore-forming fluid migrates in the fracture zone cracks and rock fractures, and precipitates into mineralization. The Pb-Zn mineralization is well deve-loped outside the molybdenum orebodies.
骆亚南, 余少华, 王雷. 北大别山千鹅冲隐伏钼铅锌矿床成矿地质作用及成矿模式[J]. 中国地质调查, 2023, 10(1): 37-44.
LUO Ya'nan, YU Shaohua, WANG Lei. Mineralization and metallogenic model of Qian’echong Mo-Pb-Zn concealed deposit in North Dabie Mountain. , 2023, 10(1): 37-44.
[1] 李法岭. 河南大别山北麓千鹅冲特大隐伏斑岩型钼矿床地质特征及成矿时代[J].矿床地质,2011,30(3):457-468. Li F L.Geological characteristics and metallogenic epoch of Qianechong large-size porphyry Mo deposit at the northern foot of Dabie Mountains,Henan Province[J].Min Dep,2011,30(3):457-468. [2] 高阳,叶会寿,李永峰,等.大别山千鹅冲钼矿区花岗岩的SHRIMP锆石U-Pb年龄、Hf同位素组成及微量元素特征[J].岩石学报,2014,30(1):49-63. Gao Y,Ye H S,Li Y F,et al.SHRIMP zircon U-Pb ages,Hf isotopic compositions and trace elements characteristics of the granites from the Qian'echong Mo deposit,Dabie Orogen[J].Acta Pe-trol Sin,2014,30(1): 49-63. [3] 杨永飞,李诺,糜梅,等.大别山北麓千鹅冲超大型钼矿床地质与成矿流体特征[J].矿物学报,2011,31(S1): 524-526. Yang Y F,Li N,Mi M,et al.Geology and mineralization characteristics of fluids of Qian'echong Large molybdenum deposit of Dabie Mountains[J].Acta Minal Sin,2011,31(S1): 524-526. [4] 任爱琴,张宏伟,吴宏伟.河南千鹅冲钼矿地球化学异常特征及找矿模型[J].物探与化探,2014,38(5): 865-871. Ren A Q,Zhang H W,Wu H W.Geochemical anomaly characteristics and model for ore prospecting in the Qian'echong molybdenum deposit,Henan Province[J].Geophys Geochem Explor,2014,38(5): 865-871. [5] Gao Y,Yang Y C,Han S J,et al.Geochemistry of zircon and apatite from the Mo ore-forming granites in the Dabie Mo belt,East China:Implications for petrogenesis and mineralization[J].Ore Geol Rev,2020,126:103733. [6] Ren Z,Zhou T F,Hollings P,et al.Magmatism in the Shapinggou district of the Dabie orogen,China:Implications for the formation of porphyry Mo deposits in a collisional orogenic belt[J].Lithos,2018,308-309.346-363. [7] Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J Petrol,1984,25(4):956-983. [8] Boynton W V.Chapter 3-Cosmochemistry of the rare earth elements:meteorite studies[J].Dev Geochem,1984,2:63-114. [9] 杨泽强,唐相伟.北大别山肖畈岩体地球化学特征和锆石LA-ICP-MS U-Pb同位素定年[J].地质学报,2015,89(4):692-700. Yang Z Q,Tang X W.Geochemical characteristics and zircon LA-ICP-MS U-Pb isotopic dating of the Xiaofan rock bodies in North Dabieshan[J].Acta Geol Sin,2015,89(4):692-700. [10] Collins W J,Beams S D,White A J R,et al.Nature and origin of A-type granites with particular reference to southeastern Austra-lia[J].Contr Mineral Petrol,1982,80(2):189-200. [11] 黄丹峰,卢欣祥,罗照华,等.大别山北缘商城岩体SHRIMP锆石U-Pb年龄、地球化学及地质意义[J].地球科学,2019,44(11):3829-3844. Huang D F,Lu X X,Luo Z H,et al.Zircon SHRIMP U-Pb Age,Geochemical characteristics and geological implications of Shangcheng Pluton in the Northern Margin of Dabie Mountain[J].Earth Sci,2019,44(11):3829-3844. [12] 李曙光,何永胜,王水炯.大别造山带的去山根过程与机制:碰撞后岩浆岩的年代学和地球化学制约[J].科学通报,2013,58(23):2316-2322. Li S G,He Y S,Wang S J.Process and mechanism of mountain-root removal of the Dabie Orogen-Constraints from geochronology and geochemistry of post-collisional igneous rocks[J].Chin Sci Bull,2013,58(35):4411-4417. [13] 张旗,焦守涛,刘惠云.Sr和Yb两个元素对花岗岩理论的重要意义——花岗岩研究的哲学思考[J].甘肃地质,2021,30(1):1-15. Zhang Q,Jiao S T,Liu H Y.Significance of Sr and Yb to granite theory:Philosophical thinking on granite research[J].Gansu Geol,2021,30(1):1-15. [14] 徐义刚,李洪颜,洪路兵,等.东亚大地幔楔与中国东部新生代板内玄武岩成因[J].中国科学:地球科学,2018,48(7):825-843. Xu Y G,Li H Y,Hong L B,et al.Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia[J].Sci China Earth Sci,2018,61(7):869-886. [15] 朱日祥,徐义刚.西太平洋板块俯冲与华北克拉通破坏[J].中国科学:地球科学,2019,49(9):1346-1356. Zhu R X,Xu Y G.The subduction of the west Pacific plate and the destruction of the North China Craton[J].Sci China Earth Sci,2019,62(9):1340-1350. [16] 袁德志,唐相伟,史兴俊,等.大别山北部桃花岭岩体年代学、地球化学特征及构造意义[J].信阳师范学院学报:自然科学版,2022,35(1):97-102. Yuan D Z,Tang X W,Shi X J,et al.Zircon geochronology and geochemistry of the Taohualing Pluton in Northern Dabieshan and their tectonic implications[J].J Xinyang Normal Univ:Nat Sci Ed,2022,35(1):97-102. [17] He Y S,Li S G,Hoefs J,et al.Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen:Constraints on the recycled lower continental crust[J].Lithos,2013,156-159:204-217. [18] 唐相伟,杨泽强,郭跃闪.河南省肖畈钼(铜)矿床流体包裹体研究及成矿模式[J].矿产与地质,2017,31(2):209-219. Tang X W,Yang Z Q,Guo Y S.The study of fluid inclusion and metallogenic model of Xiaofan copper-molybdenum deposit in Henan Province[J].Min Resou Geol,2017,31(2):209-219.