Radon anomaly characteristics in the soil and uranium metallogenic prediction in Xianlaga depression of Erlian Basin
GUO Jianjun1, ZHAO Tianlin1,2, PAN Wei2,3, WEI Anjun1,2, YIN Yongpeng2, LI Zhao2
1. Sino Shaanxi Nuclear Industry Group,Shaanxi Xi'an 710100, China; 2. Sino Shaanxi Nuclear Industry Group Geological Survey Company Ltd.,Shaanxi Xi'an 710100, China; 3. China Power Construction Group Northwest Survey, Design and Research Institute Co., Ltd.,Shaanxi Xi'an 710065, China
Abstract:Erlian Basin is important sandstone-type uranium deposits in Northern China. Many medium-scale and large-scale uranium deposits have been found in the periphery and adjacent areas of Xianlaga depression, indicating favorable uranium prospecting potential. The authors conducted measurement of radon in the soil and its daughters for obtaining the information of weak (uranium) mineralization on the surface of the depression, The anomaly data were analyzed and compared with of the known radon anomaly measurement model of the uranium deposits in Erlian Basin, and the drilling verification was carried out. Three anomaly areas of radon and its daughters were delineated in the working area based on soil radon gas measurement. Combined with the known anomaly models of uranium deposits, drilling holes were deployed in M1 anomaly high value area to verify the superiority. Multistage oxidation alteration was found in the sandstone of the Lower Saihan Formation in ZKX-1 borehole, and it was consistent with the prediction of the anomaly model, indicating favorable uranium prospecting potential. It is considered that the M1 anomaly area is caused by the strong development of phreatic interlayer or interlayer oxidation, and uranium mineralization enrichment may exist in the low halo or background value area of radon concentration on both sides of the high value area, which is worthy of further exploration. The M2 and M3 anomaly areas may be related to phreatic oxidation, and the intensity of the anomaly is controlled by the porosity and permeability of the oxidized sand body. The Y3 uranium prospective area between the M2 and M3 anomaly areas are favorable prospecting areas. This research shows that the depression has good uranium metallogenic potential and cound provide references for the further uranium prospecting.
[1] 刘武生,李必红,史清平,等.二连盆地砂岩型铀矿土壤氡异常模型及应用[J].物探与化探,2015,39(2):234-239. Liu W S,Li B H,Shi Q P,et al.Model and application of radon anomaly in soil of sandstone type uranium deposits in Erlian Basin[J].Geophysical and Geochemical Exploration,2015,39(2):234-239. [2] 宋亮,柯丹,顾大钊,等.尼日尔Azelik砂岩型铀矿勘查中土壤氡气测量方法应用研究[J].世界核地质科学,2015,32(4):237-242. Song L,Ke D,Gu D Z,et al.Study on application of soil radon survey method in the exploration for sandstone type uranium deposit in Azelik,Niger[J].World Nuclear Geoscience,2015,32(4):237-242. [3] 李文灏,许德如,颜照坤,等.鄂尔多斯盆地与四川盆地砂岩型铀矿铀成矿条件对比初探[J/OL].东华理工大学学报:自然科学版:1-15.[2024-05-21].http://kns.cnki.net/kcms/detail/36.1300.N.20231225.1052.002.html. Li W H,Xu D R,Yan Z K,et al.Comparison of uranium metallogenic conditions for sandstone-type uranium deposits between Ordos Basin and Sichuan Basin[J/OL].Journal of East China University of Technology (Natural Science):1-15.[2024-05-21].http://kns.cnki.net/kcms/detail/36.1300.N.20231225.1052.002.html. [4] 胡安顺,王石,孟庆鲁.土壤氡气测量在二连盆地砂岩型铀矿调查中的应用[J].物探与化探,2021,45(6):1378-1385. Hu A S,Wang S,Meng Q L.The application of soil radon measurement to the investigation of sandstone typeuranium deposits in Erlian basin[J].Geophysical and Geochemical Exploration,2021,45(6):1378-1385. [5] 赵丹,蔡煜琦,易超,等.土壤氡气测量在北方砂岩型铀矿勘查中的应用研究[C]//中国核学会.中国核科学技术进展报告(第六卷)——中国核学会2019年学术年会论文集第2册(铀矿地质分卷(下)、铀矿冶分卷).北京:中国原子能出版社,2019. Zhao D,Cai Y Q,Yi C,et al.Application of radon measurement in the exploration of sandstone-type uranium deposits in North China[C]//Chinese Nuclear Society.Report on the progress of nuclear science and Technology in China (Vol.6)-Proceedings of the 2019 Annual Conference of the Chinese Academy of Chinese Nuclear Society,Vol.2(Uranium Geology Subvolume (II),Uranium Mining and Metallurgy Subvolume).Beijing:China Atomic Energy Press,2019. [6] 吴燕清,王世成,丁园,等.氡气及CSAMT联合探测在内蒙古五十家子盆地铀矿勘查中的应用研究[J].物探与化探,2019,43(4):726-733. Wu Y Q,Wang S C,Ding Y,et al.Application study of radon gas and CSAMT joint detection in the uranium exploration in the Wushijiazi Basin of Inner Mongolia[J].Geophysical and Geochemical Exploration,2019,43(4):726-733. [7] 张志强. 二连盆地咸拉嘎凹陷白垩系沉积微相研究[D].西安:西安石油大学,2012. Zhang Z Q.The Research of Cretaceous Sedimentary Microfacies in Xianlaga Sag of Erlian Basin[D].Xi'an:Xi'an Shiyou University,2012. [8] 陈波. 二连盆地咸拉嘎凹陷白垩系储层特征及评价[D].西安:西安石油大学,2012. Chen B.Reservoirs characteristics and evaluation of cretaceous in Xianlaga depression,Erlian Basin[D].Xi'an:Xi'an Shiyou University,2012. [9] 乔鹏,杨建新,戈燕忠,等.内蒙古二连盆地铀矿勘查进展与找矿方向[J].地质论评,2015,61(S1):250-251. Qiao P,Yang J X,Ge Y Z,et al.Uranium exploration progress and prospecting direction in Erlian Basin,Inner Mongolia[J].Geolo-gical Review,2015,61(S1):250-251. [10] 康世虎,杨建新,刘武生,等.二连盆地中部古河谷砂岩型铀矿成矿特征及潜力分析[J].铀矿地质,2017,33(4):206-214. Kang S H,Yang J X,Liu W S,et al.Mineralization characteristics and potential of paleo-valley type uranium deposit in Central Erlian Basin,Inner Mongolia[J].Uranium Geology,2017,33(4):206-214. [11] 刘波. 二连盆地巴赛齐含铀古河谷构造建造与铀成矿模式研究[D].吉林:吉林大学,2018. Liu B.Study of Structure and Construction in Uranium-bearing Paleo-valley and Uranium Metallogenic Models in the Basaiqi Area,Erlian Basin[J].Jilin:Jilin University,2018. [12] 吕永华,康世虎,刘武生,等.二连盆地哈达图铀矿床关键控矿要素与成矿模式研究[J].铀矿地质,2021,37(4):584-592. Lyu YH,Kang S H,Liu W S,et al.Study on key ore-controlling factors and metallogenic model of Hadadu Uranium Deposit in Erlian Basin[J].Uranium Geology,2021,37(4):584-592. [13] 张建华,肖渊甫,陆勇,等.内蒙古巴彦塔拉盆地铀成矿条件分析[J].矿物学报,2015,35(S1):689-690. Zhang J H,Xiao Y P,Lu Y,et al.Analysis of uranium metallogenic conditions in Bayantala Basin,Inner Mongolia[J].Acta Mineralogica Sinica,2015,35(S1):689-690. [14] 俞礽安,朱强,文思博,等.鄂尔多斯盆地塔然高勒地区直罗组砂岩源区构造背景与物源分析[J].地球科学,2020,45(3):829-843. Yu R A,Zhu Q,Wen S B,et al.Tectonic setting and provenance analysis of Zhiluo formation sandstone of Tarangaole Area in the Ordos Basin[J].Earth Science,45(3):829-843. [15] 刘成东,黄晓宇,万建军,等.内蒙古巴彦乌拉铀矿床赛汉组砂岩地球化学特征及古环境意义[J].东华理工大学学报:自然科学版,2023,46(2):101-112. Liu C D,Huang X Y,Wan J J,et al.Geochemical characteristics and paleoenvironmental significance of the Saihan Formation in Bayanwula uranium deposit,Inner Mongolia[J].Journal of East China University of Technology (Natural Science),2023,46(2):101-112. [16] 吴慧山,梁树红,王海洋,等.氡测量及实用数据[M].北京:原子能出版社,2001:53-56. Wu H S,Liang S H,Wang H Y,et al.Radon Measurement and Practical Data[M].Beijing:Atomic Energy Press,2001:53-56. [17] 吴慧山,白云生,林云飞,等.氡迁移的接力传递作用[J].地球物理学报,1997,40(1):136-142. Wu H S,Bai Y S,Lin Y F,et al.The action of relay transmission of the radon migration[J].Chinese Journal of Geophysics,1997,40(1):136-142. [18] 吴慧山,林云飞,白云生,等.氡测量方法与应用[M].北京:原子能出版社,1995:45-60. Wu H S,Lin Y F,Bai Y S,et al.Methods and Applications of Radon[M].Beijing:Atomic Energy Press,1995:45-60. [19] 胡俊峰,陈永凌,代雪健,等.定日县岗嘎地堑盆地隐伏断层氡气特征及其活动性分析[J].中国地质调查,2024,11(1):45-56. Hu J F,Chen Y L,Dai X J,et al.Radon gas characteristics and activity analysis of hidden faults in Gangga Graben Basin of Dingri County[J].Geological Survey of China,2024,11(1):45-56. [20] 吴慧山,周镭庭,李璀明,等.放射性测量新技术:第二集[M].北京:地质出版社,1984:130-152. Wu H S,Zhou L T,Li C M,et al.New Techniques for Measuring Radioactivity:Part Two[M].Beijing:Geological Press,1984:130-152. [21] 国家国防科技工业局.EJ/T 605—2018 铀矿勘查氡及其子体测量规范[S].2019. State Administration of Science,Technology and Industry for National Defence,PRC.EJ/T 605-2018,Specifications for Radon and Its Progeny Survey in Uranium Exploration[S].2019. [22] 国家国防科技工业局.EJ/T 1213—2018铀矿地质勘查成果分类分级[S].2018. State Administration of Science,Technology and Industry for National Defence,PRC.EJ/T 1213-2018 Classification and Gradation of Uranium Resource Prospecting and Exploration Outcomes[S].2018.