Abstract:The consequences of global climate change in the next one hundred years is a hotly-debated topic at present, and the deep discussion of the driving mechanism for global climate change can truly help recognize the global climate change. The continuous growth of Tibetan Plateau has absorbed a huge amount of atmospheric CO2, which leads to the sharp drop of the atmospheric CO2 concentration. From the greenhouse climate, the Earth has entered into an icehouse climate characterized by the cycling of glacial and interglacial periods, and has become a new carbon reservoir. During the interglacial period, the Tibetan Plateau and the Mongolian Plateau transported a huge amount of fresh water to the inland areas at middle and low latitudes (referred as the inland area below), which resulted in the strong chemical weathering of silicate rocks. The vegetation and lacustrine deposition were developed, which absorbed huge amount of atmospheric CO2, as a carbon sink. During the glacial period, the Tibetan Plateau and the Mongolian Plateau eventually transported a large amount of surface fresh water and dust from the inland areas to the high latitude areas, resulting in the occurrence of desertification in the inland areas. The absorbed CO2 was far less than the emitted amount, and the inland areas became the carbon source area. Therefore, the atmospheric CO2 concentration increased. This mechanism has maintained the low concentration and pseudo dynamic equilibrium of atmospheric CO2 since the Miocene. The mean surface temperature drove the circulation of fresh water between high and low latitudes. The huge amount of anthropogenic carbon emission caused the rapid rise of atmospheric CO2 concentration and global warming. Therefore, the fresh water returned to the inland area, resulting in the rapid green in inland areas and more intense chemical weathering of silicate. The ability to absorb atmospheric CO2 was dramatically enhanced, and the inland areas were switched from the carbon source area to the carbon sink area, which prevented the further rise of atmospheric CO2 concentration. According to the preliminary calculation in this study, when atmospheric CO2 concentration reaches (510±40)×10-6, the rapid increasing trend will be restrained, as early as 2050 and as late as 2090. Future century-scale climate change is therefore predictable and periodic, driven by tectonic activities within the Earth and Sun.
[1] McKinley G A,Fay A R,Takahashi T,et al.Convergence of atmospheric and North Atlantic carbon dioxide trends on multideca-dal timescales[J].Nat Geosci,2011,4(9):606-610. [2] Le Quéré C,Raupach M R,Canadell J G,et al.Trends in the sources and sinks of carbon dioxide[J].Nat Geosci,2009,2(12):831-836. [3] Watson A J,Schuster U,Bakker D C E,et al.Tracking the variable North Atlantic sink for atmospheric CO2[J].Science,2009,326(5958):1391-1393. [4] Canadell J G,Le Quéré C,Raupach M R,et al.Contributions to accelerating atmospheric CO2 growth from economic activity,carbon intensity,and efficiency of natural sinks[J].Proc Natl Acad Sci USA,2007,104(47):18866-18870. [5] Pan Y D,Birdsey R A,Fang J Y,et al.A large and persistent carbon sink in the world’s forests[J].Science,2011,333(6045):988-993. [6] Piao S L,Ciais P,Friedlingstein P,et al.Net carbon dioxide losses of northern ecosystems in response to autumn warming[J].Nat-ure,2008,451(7174):49-52. [7] Zhao M S,Running S W.Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J].Science,2010,329(5994):940-943. [8] Friedlingstein P,Cox P,Betts R,et al.Climate-carbon cycle feedback analysis:Results from the C4MIP model intercomparison[J].J Climate,2006,19(14):3337-3353. [9] Lenton T M,Rockström J,Gaffney O,et al.Climate tipping points:too risky to bet against[J].Nature,2019,575(7784):592-595. [10] Steffen W,Rockström J,Richardson K,et al.Trajectories of the earth system in the anthropocene[J].Proc Natl Acad Sci USA,2018,115(33):8252-8259. [11] Kaufmann R K,Kauppi H,Mann M L,et al.Reconciling anthropogenic climate change with observed temperature 1998--2008[J].Proc Natl Acad Sci USA,2011,108(29):11790-11793. [12] Roberts C D,Palmer M D,McNeall D,et al.Quantifying the likelihood of a continued hiatus in global warming[J].Nat Clim Change,2015,5(4):337-342. [13] Le Quéré C,Peters G P,Friedlingstein P,et al.Fossil CO2 emi-ssions in the post-COVID-19 era[J].Nat Clim Change,2021,11(3):197-199. [14] Griffiths M L,Johnson K R,Pausata F S R,et al.End of Green Sahara amplified mid-to late Holocene megadroughts in mainland Southeast Asia[J].Nat Commun,2020,11(1):1-12. [15] Bunbury J,Ikram S,Roughley C.Holocene large lake development and desiccation:Changing habitats in the Kharga Basin of the Egyptian Sahara[J].Geoarchaeology,2020,35(4):467-486. [16] Biscaye P E,Grousset F E,Revel M,et al.Asian provenance of glacial dust (stage 2) in the Greenland ice sheet project 2 ice core,summit,Greenland[J].J Geophys Res,1997,102(C12):26765-26781. [17] Ram M,Koenig G.Continuous dust concentration profile of pre-Holocene ice from the Greenland Ice Sheet Project 2 ice core:Dust stadials,interstadials,and the Eemian[J].J Geophys Res,1997,102(C12):26641-26648. [18] 刘焰. 人类巨量碳排放后果分析:来自青藏高原综合调查的启示[J].中国地质调查,2019,6(3):1-13. Liu Y.Effects of huge anthropogenic carbon emission:Inspiration from comprehensive investigations of Tibetan Plateau[J].Geol Surv China,2019,6(3):1-13. [19] 叶笃正. 西藏高原对于大气环流影响的季节变化[J].气象学报,1952,23(1/2):33-47. Ye D Z.Seasonal variations of the effects of the Tibetan Plateau on atmospheric circulation[J].Acta Meteor Sin,1952,23(1/2):33-47. [20] Molnar P,England P,Martinod J.Mantle dynamics,uplift of the Tibetan plateau,and the Indian monsoon[J].Rev Geophys,1993,31(4):357-396. [21] Lehmkuhl F,Haselein F.Quaternary paleoenvironmental change on the Tibetan Plateau and adjacent areas (western China and western Mongolia)[J].Quatern Int,2000,65/66:121-145. [22] Troll C.The Upper Limit of Aridity and the Arid Core of High Asia[M]//Troll C.Landschaftsö Kologie der Hochgebirge Eurasiens.Wiesbaden:Franz Steiner Verlag GMBH,1973:237-243. [23] Raymo M E,Ruddiman W F.Tectonic forcing of late Cenozoic climate[J].Nature,1992,359(6391):117-122. [24] 张克信,王国灿,季军良,等.青藏高原古近纪—新近纪地层分区与序列及其对隆升的响应[J].中国科学:地球科学,2010,40(12):1632-1654. Zhang K X,Wang G C,Ji J L,et al.Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet plateau and their response to uplift of the plateau[J].Sci China Earth Sci,2010,53(9):1271-1294. [25] Tapponnier P,Xu Z Q,Roger F,et al.Oblique stepwise rise and growth of the Tibet Plateau[J].Science,2001,294(5547):1671-1677. [26] Wang C S,Dai J G,Zhao X X,et al.Outward-growth of the Tibetan Plateau during the Cenozoic:A review[J].Tectonophysics,2014,621:1-43. [27] Rowley D B,Currie B S.Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J].Nature,2006,439(7077):677-681. [28] Liu Y,Yang Z Q,Wang M.History of zircon growth in a high-pressure granulite within the eastern Himalayan syntaxis,and tectonic implications[J].Int Geol Rev,2007,49(9):861-872. [29] Kapp P,DeCelles P G,Gehrels G E,et al.Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J].GSA Bull,2007,119(7/8):917-933. [30] 吴珍汉,赵珍,叶培盛,等.青藏高原中部色林错—伦坡拉逆冲推覆构造系统[J].地球学报,2016,37(4):441-448. Wu Z H,Zhao Z,Ye P S,et al.The Siling Co-Lunpola thrust systems in the central Tibetan Plateau[J].Acta Geosci Sin,2016,37(4):441-448. [31] 李亚林,王成善,伊海生,等.西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起[J].地质学报,2006,80(8):1118-1130,1234. Li Y L,Wang C S,Yi H S,et al.Cenozoic thrust system and uplifting of the Tanggula mountain,Northern Tibet[J].Acta Geol Sin,2006,80(8):1118-1130,1234. [32] 伍连东,苑婷媛,金海龙,等.西藏西北部浅变质石英砂岩岩石学特征及其构造意义[J].岩石学报,2018,34(3):701-718. Wu L D,Yuan T Y,Jin H L,et al.Petrology of low-grade metamorphic quartz sandstones within northwestern Tibetan regions:Implications to the tectonic evolution of the northwestern Tibet[J].Acta Petrol Sin,2018,34(3):701-718. [33] Zachos J C,Pagani M,Sloan L,et al.Trends,rhythms,and aberrations in global climate 65 Ma to present[J].Science,2001,292(5517):686-693. [34] 吴珍汉,吴中海,胡道功,等.青藏高原古大湖与夷平面的关系及高原面形成演化过程[J].现代地质,2009,23(6):993-1002. Wu Z H,Wu Z H,Hu D G,et al.Vast paleo-lakes,planation surface and topographic evolution of the Tibetan plateau[J].Geoscience,2009,23(6):993-1002. [35] 孔昭宸,杜乃秋,山发寿.青藏高原晚新生代以来植被时空变化的初步探讨[J].微体古生物学报,1996,13(4):339-351. Kong Z C,Du N Q,Shan F S.A preliminary study of vegetational changes in space-time on Qinghai-Xizang Plateau since late Cenozoic[J].Acta Micropalaeontol Sin,1996,13(4):339-351. [36] 黄健,苏涛,李树峰,等.西藏札达盆地上新世植物群及古环境[J].中国科学:地球科学,2020,50(2):220-232. Huang J,Su T,Li S F,et al.Pliocene flora and paleoenvironment of Zanda Basin,Tibet,China[J].Sci China Earth Sci,2020,50(2):220-232. [37] 徐仁. 青藏古植被的演变与青藏高原的隆起[J].植物分类学报,1982,20(4):385-391. Xu R.The uplift of the Qinghai-Xizang (Tibet) Plateau in relation to the vegetational changes in the past[J].Acta Phytotaxo-nom Sin,1982,20(4):385-391. [38] 江樟焰,伍永秋,崔之久.“昆仑-黄河运动”与我国自然地理格局的形成[J].北京师范大学学报:自然科学版,2005,41(1):85-88. Jiang Z Y,Wu Y Q,Cui Z J.Kunlun-Yellow River tectonic motion and formation of modern physical geography pattern of China[J].J Beijing Normal Univ:Nat Sci,2005,41(1):85-88. [39] 施雅风,赵井东.40~30 ka BP中国特殊暖湿气候与环境的发现与研究过程的回顾[J].冰川冻土,2009,31(1):1-10. Shi Y F,Zhao J D.The special warm-humid climate and environment in China during 40—30 ka BP:Discovery and review[J].J Glaciol Geocryol,2009,31(1):1-10. [40] 施雅风,汤懋苍,马玉贞.青藏高原二期隆升与亚洲季风孕育关系探讨[J].中国科学(D辑),1998,28(3):263-271. Shi Y F,Tang M C,Ma Y Z.Linkage between the second uplifting of the Qinghai-Xizang (Tibetan) Plateau and the initiation of the Asian monsoon system[J].Sci China Ser D Earth Sci,1998,28(3):263-271. [41] 李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-391. Li J J,Fang X M,Pan B T,et al.Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J].Quat Sci,2001,21(5):381-391. [42] 安芷生,张培震,王二七,等.中新世以来我国季风-干旱环境演化与青藏高原的生长[J].第四纪研究,2006,26(5):678-693. An Z S,Zhang P Z,Wang E Q,et al.Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene[J].Quat Sci,2006,26(5):678-693. [43] Hsu K J.Could global warming be a blessing for mankind?[J].Terr Atmos Oceanic Sci,1996,7(3):375-392. [44] 张鸿义,门国发.塔克拉玛干沙漠腹地第四纪地层划分与环境变迁[J].新疆地质,2002,20(3):256-261. Zhang H Y,Men G F.Stratigraphic subdivision and climatic change of the Quaternary of the center Taklimakan Desert[J].Xinjiang Geol,2002,20(3):256-261. [45] Liu W G,Liu Z H,Sun J M,et al.Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition[J].Geology,2020,48(8):782-786. [46] Ding Z L,Liu T S,Rutter N W,et al.Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years[J].Quat Res,1995,44(2):149-159. [47] Chen K Z,Bowler J M.Late Pleistocene evolution of salt lakes in the Qaidam Basin,Qinghai Province,China[J].Palaeogeogr,Palaeoclimatol,Palaeoecol,1986,54(1-4):87-104. [48] 许靖华. 太阳、气候、饥荒与民族大迁移[J].中国科学(D辑),1998,28(4):366-384. Hsu K J.Sun,climate,hunger,and mass migration[J].Sci China Ser D Earth Sci,1998,28(4):366-384. [49] Zeebe R E,Caldeira K.Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records[J].Nat Geosci,2008,1(5):312-315. [50] 崔之久,陈艺鑫,张威,等.中国第四纪冰期历史、特征及成因探讨[J].第四纪研究,2011,31(5):749-764. Cui Z J,Chen Y X,Zhang W,et al.Research history,glacial chronology and origins of Quaternary glaciations in China[J].Quat Sci,2011,31(5):749-764. [51] 赵井东,施雅风,王杰.中国第四纪冰川演化序列与MIS对比研究的新进展[J].地理学报,2011,66(7):867-884. Zhao J D,Shi Y F,Wang J.Comparison between Quaternary glaciations in China and the marine oxygen isotope stage (MIS):An improved schema[J].Acta Geogr Sin,2011,66(7):867-884. [52] Crowley T J.Causes of climate change over the past 1000 years[J].Science,2000,289(5477):270-277. [53] Dai J H,Mosley-Thompson E,Thompson L G.Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora[J].J Geophys Res Atmos,1991,96(D9):17361-17366. [54] Hansen J,Sato M,Kharecha P,et al.Target atmospheric CO2:where should humanity aim?[J].Open Atmos Sci J,2008,2:217-231. [55] 施雅风,贾玉连,于革,等.40~30 ka BP青藏高原及邻区高温大降水事件的特征、影响及原因探讨[J].湖泊科学,2002,14(1):1-11. Shi Y F,Jia Y L,Yu G,et al.Features,impacts and causes of the high temperature and large precipitation event in the Tibetan Plateau and its adjacent area during 40—30 ka BP[J].J Lake Sci,2002,14(1):1-11. [56] 马玉贞,张虎才,李吉均,等.腾格里沙漠晚更新世孢粉植物群与气候环境演变[J].植物学报,1998,40(9):871-879. Ma Y Z,Zhang H C,Li J J,et al.On the evolution of the palynoflora and climatic environment during late Pleistocence in Tengger Desert,China[J].Acta Bot Sin,1998,40(9):871-879. [57] Lan J H,Xu H,Lang Y C,et al.Dramatic weakening of the East Asian summer monsoon in northern China during the transition from the Medieval Warm Period to the Little Ice Age[J].Geology,2020,48(4):307-312. [58] 孙爱芝,冯兆东,唐领余,等.13 ka BP以来黄土高原西部的植被与环境演化[J].地理学报,2008,63(3):280-292. Sun A Z,Feng Z D,Tang L Y,et al.Vegetation and climate changes in the western part of the Loess Plateau since 13 ka BP[J].Acta Geogr Sin,2008,63(3):280-292. [59] 王猛,刘焰,何延波,等.喜马拉雅山脉的地质地貌特征:来自SRTM数字高程模型和降水量数据的约束[J].地质科学,2008,43(3):603-622. Wang M,Liu Y,He Y B,et al.Geomorphic characteristics of the Himalayan Mountains and its tectonic implications:New insights from SRTM digital elevation model and precipitation data[J].Chin J Geol,2008,43(3):603-622. [60] 梁娟,姜辰蓉,毛海峰.毛乌素绿了被人类缚住的“沙漠”[J].科学大观园,2020(15):66-71. Liang J,Jiang C R,Mao H F.Mu Us is becoming green:The “Desert” bound by human[J].Grand Garden Sci,2020(15):66-71. [61] Chen C,Park T,Wang X H,et al.China and India lead in greening of the world through land-use management[J].Nat Sustain,2019,2(2):122-129. [62] Xu Z K,Wan S M,Colin C,et al.Enhancements of Himalayan and Tibetan erosion and the produced organic carbon burial in distal tropical marginal seas during the Quaternary glacial periods:An integration of sedimentary records[J].J Geophy Res Earth Surf,2021,126(3):e2020JF005828. [63] West A J,Galy A,Bickle M.Tectonic and climatic controls on silicate weathering[J].Earth Planet Sci Lett,2005,235(1/2):211-228. [64] Clift P D,Hodges K V,Heslop D,et al.Correlation of Himalayan exhumation rates and Asian monsoon intensity[J].Nat Geosci,2008,1(12):875-880. [65] Métivier F,Gaudemer Y,Tapponnier P,et al.Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins,China[J].Tectonics,1998,17(6):823-842. [66] Métivier F,Gaudemer Y,Tapponnier P,et al.Mass accumulation rates in Asia during the Cenozoic[J].Geophys J Int,1999,137(2):280-318. [67] 袁广祥,尚彦军,杨志法.藏东南波密地区岩石风化速率及其影响因素分析[J].工程地质学报,2010,18(2):191-196. Yuan G X,Shang Y J,Yang Z F.Analysis of rock weathering rate and influencing factors in Bomi region,Southeast Tibet[J].J Eng Geol,2010,18(2):191-196. [68] 杨保,施雅风.40~30 ka B.P.中国西北地区暖湿气候的地质记录及成因探讨[J].第四纪研究,2003,23(1):60-68. Yang B,Shi Y F.Warm-humid climate in northwest China du-ring the period of 40—30 ka B.P.:Geological records and origin[J].Quat Sci,2003,23(1):60-68. [69] 陈杰,卢演俦,丁国瑜.塔里木西缘晚新生代造山过程的记录——磨拉石建造及生长地层和生长不整合[J].第四纪研究,2001,21(6):528-539. Chen J,Lu Y C,Ding G Y.Records of late Cenozoic mountain building in western Tarim Basin:Molasses,growth strata and growth unconformity[J].Quat Sci,2001,21(6):528-539. [70] Zheng H B,Powell C M,An Z S,et al.Pliocene uplift of the northern Tibetan Plateau[J].Geology,2000,28(8):715-718. [71] 冯兆东,陈发虎,张虎才,等.末次冰期-间冰期蒙古高原与黄土高原对全球变化的重要贡献[J].中国沙漠,2000,20(2):171-177. Feng Z D,Chen F H,Zhang H C,et al.Contribution to global change of Mongolian Plateau and Loess Plateau in the last glaciation and interglacial periods[J].J Desert Res,2000,20(2):171-177. [72] 何祥丽,张绪教,何泽新,等.内蒙古狼山地区晚第四纪泥石流发育特征及其构造意义[J].地质通报,2015,34(9):1735-1748. He X L,Zhang X J,He Z X,et al.Development features of the Late Quaternary debris flow and their tectonic significance in Lang-shan Area,Inner Mongolia[J].Geol Bull China,2015,34(9):1735-1748. [73] 刘亮,梁斌,燕中林,等.龙泉山断裂带断层最新活动年代及方式[J].中国地质调查,2020,7(5):77-87. Liu L,Liang B,Yan Z L,et al.Latest active age and model of the faults in Longquanshan fault belt[J].Geol Surv China,2020,7(5):77-87. [74] Wang J,Feng L,Palmer P I,et al.Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J].Nature,2020,586(7831):720-723.