Abstract:Currently, about 25% of CO2 from fossil fuel sources has been absorbed by the oceans, which mitigated the impact of human activities on climate change. The oceans transported CO2 from the atmosphere to the deep sea through several conceptual carbon pumps. The high pressure and low temperatures of the deep sea could facilitate the dissolution of CO2, and the oceans have stored inorganic carbon equivalent to 50 times of that in the atmosphere currently. Besides, the large amounts of methane hydrates have been stored in deep-sea sediments. Understanding the carbon cycle process in the deep sea is important to protect the carbon sequestration capacity and develop the carbon sequestration potential of the ocean. The authors have summarized the domestic and international researches on ocean carbon reservoirs and carbon deliveries, focusing on the process of the carbon cycle in the deep sea and the impacts of high pressure on life activities. The microorganisms drive the deep-sea carbon cycle, and the most of the organic carbon containing in phytoplankton is mineralized to CO2 by microorganisms during sedimentation or converted to refractory organic carbon, which makes the deep sea to be a vast and long-turnover time reservoir of organic carbon. The high pressure could increase the activity of archaeal methane anaerobic oxidation and enhance the ability to shield methane release from the seafloor. Besides, the process of methane oxidation under high pressure produces bicarbonate, and acetic acid which can support heterotrophs, so the global budget of methane anaerobic oxidation may be underestimated. The additional production of ammonia from cellular metabolism under high pressure could serve as a potential energy source for inorganic carbon fixation by ammonia-oxidizing archaea. Therefore, it is urgent for deepening our understanding of the deep-sea carbon cycle and other elemental cycles to investigate the impact of present and future human activities on deep-sea carbon cycle processes and environmental effects, and to assess the possibility of applying the deep sea as a geoengineering technology platform to sequester CO2.
刘亮霆, 肖湘. 高压下深海碳循环的过程及其对生命活动的影响[J]. 中国地质调查, 2021, 8(4): 66-78.
LIU Liangting, XIAO Xiang. Deep-sea carbon cycle under high pressure and its impacts on life activities. , 2021, 8(4): 66-78.
[1] IPCC.Climate Change 2014:Synthesis Report[R].Geneva,Switzerland:IPCC,2014. [2] Friedlingstein P,O’Sullivan M,Jones M W,et al.Global carbon budget 2020[J].Earth Syst Sci Data,2020,12(4):3269-3340. [3] Myhre G,Shindell D,Bréon F M,et al.Anthropogenic and Natural Radiative Forcing[C]//Climate Change 2013:the Physical Science Basis:Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013:659-740. [4] Tans P.Trends in Atmospheric Carbon Dioxide[EB/OL].[2021-06-28].https://gml.noaa.gov/ccgg/trends/. [5] MacFarling M C,Etheridge D,Trudinger C,et al.Law dome CO2,CH4 and N2O ice core records extended to 2000 years BP[J].Geophys Res Lett,2006,33(14):L14810. [6] Lüthi D,Le Floch M,Bereiter B,et al.High-resolution carbon dioxide concentration record 650 000-800 000 years before pre-sent[J].Nature,2008,453(7193):379-382. [7] Dlugokencky E.Trends in Atmospheric Methane[EB/OL].[2021-06-28].https://gml.noaa.gov/ccgg/trends_ch4/. [8] Falkowski P,Scholes R J,Boyle E,et al.The global carbon cycle:A test of our knowledge of earth as a system[J].Science,2000,290(5490):291-296. [9] Atwood T B,Witt A,Mayorga J,et al.Global patterns in marine sediment carbon stocks[J].Front Mar Sci,2020,7:165. [10] Lee T R,Wood W T,Phrampus B J.A machine learning (kNN) approach to predicting global seafloor total organic carbon[J].Global Biogeochem Cycles,2019,33(1):37-46. [11] Estes E R,Pockalny R,D’Hondt S,et al.Persistent organic matter in oxic subseafloor sediment[J].Nat Geosci,2019,12(2):126-131. [12] Bianchi T S,Schreiner K M,Smith R W,et al.Redox effects on organic matter storage in coastal sediments during the holocene:a biomarker/proxy perspective[J].Annu Rev Earth Planet Sci,2016,44:295-319. [13] Cicerone R J,Oremland R S.Biogeochemical aspects of atmospheric methane[J].Global Biogeochem Cycles,1988,2(4):299-327. [14] Archer D.Methane hydrate stability and anthropogenic climate change[J].Biogeosciences,2007,4(4):521-544. [15] Kvenvolden K A.Gas hydrates-geological perspective and global change[J].Rev Geophys,1993,31(2):173-187. [16] Kvenvolden K A.Methane hydrate in the global organic carbon cycle[J].Terra Nova,2002,14(5):302-306. [17] Kvenvolden K A.Methane hydrate---A major reservoir of carbon in the shallow geosphere?[J].Chem Geol,1988,71(1/2/3):41-51. [18] Chronopoulou P M,Shelley F,Pritchard W J,et al.Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone[J].ISME J,2017,11(6):1386-1399. [19] Schlesinger W H,Bernhardt E S.The oceans[M]//Schlesinger W H,Bernhardt E S.Biogeochemistry:An Analysis of Global Change.4th ed.Amsterdam:Elsevier,2020:361-432. [20] Skinner L C,Primeau F,Freeman E,et al.Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2[J].Nat Commun,2017,8:16010. [21] Rae J W B,Burke A,Robinson L F,et al.CO2 storage and release in the deep Southern Ocean on millennial to centennial timesca-les[J].Nature,2018,562(7728):569-573. [22] Feely R A,Sabine C L,Lee K,et al.Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J].Science,2004,305(5682):362-366. [23] Berner R A.A model for calcium,magnesium and sulfate in seawater over Phanerozoic time[J].Am J Sci,2004,304(5):438-453. [24] Ridgwell A,Zeebe R E.The role of the global carbonate cycle in the regulation and evolution of the Earth system[J].Earth Planet Sci Lett,2005,234(3/4):299-315. [25] Sulpis O,Boudreau B P,Mucci A,et al.Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2[J].Proc Natl Acad Sci USA,2018,115(46):11700-11705. [26] Berelson W M,Balch W M,Najjar R,et al.Relating estimates of CaCO3 production,export,and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor:A revised global carbonate budget[J].Global Biogeochem Cycles,2007,21(1):GB1024. [27] Behrenfeld M J,Falkowski P G.Photosynthetic rates derived from satellite-based chlorophyll concentration[J].Limnol Oceanogr,1997,42(1):1-20. [28] Quay P D,Peacock C,Björkman K,et al.Measuring primary production rates in the ocean:Enigmatic results between incubation and non-incubation methodsat Station ALOHA[J].Global Biogeochem Cycles,2010,24(3):GB3014. [29] Lee K.Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon[J].Limnol Oceanogr,2001,46(6):1287-1297. [30] Ridgwell A,Arndt S.Why dissolved organics matter:DOC in Ancient Oceans and Past Climate Change[M]//Hansell D A,Carlson C A.Biogeochemistry of Marine Dissolved Organic Matter.2nd ed.New York:Academic Press,2015:1-20 [31] Garcia H E,Weathers K W,Paver C R,et al.World Ocean Atlas 2018,Volume 4:Dissolved Inorganic Nutrients (Phosphate,Nitrate and Nitrate+Nitrite,Silicate).A.mishonov technical editor[R].NOAA Atlas NESDIS 84,Silver Spring:U.S.Department of Commerce,National Oceanic and Atmospheric Administration,2019:35. [32] Hansell D A,Carlson C A,Repeta D J,et al.Dissolved organic matter in the ocean:a controversy stimulates new insights[J].Oceanography,2009,22(4):202-211. [33] 焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J].中国科学:地球科学,2013,43(1):1-18. Jiao N Z,Zhang C L,Li C,et al.Controlling mechanisms and climate effects of microbial carbon pump in the ocean[J].Sci Sin Terr,2013,43(1):1-18. [34] 焦念志,汤凯,张瑶,等.海洋微型生物储碳过程与机制概论[J].微生物学通报,2013,40(1):71-86. Jiao N Z,Tang K,Zhang Y,et al.Microbial processes and mechanisms in carbon sequestration in the ocean[J].Microbiol China,2013,40(1):71-86. [35] Jiao N Z,Cai R H,Zheng Q,et al.Unveiling the enigma of refractory carbon in the ocean[J].Natl Sci Rev,2018,5(4):459-463. [36] Koch B P,Dittmar T.From mass to structure:An aromaticity index for high-resolution mass data of natural organic matter[J].Ra-pid Commun Mass Spectrom,2006,20(5):926-932. [37] Medeiros P M,Seidel M,Powers L C,et al.Dissolved organic matter composition and photochemical transformations in the northern North Pacific Ocean[J].Geophys Res Lett,2015,42(3):863-870. [38] Legendre L,Rivkin R B,Weinbauer M G,et al.The microbial carbon pump concept:Potential biogeochemical significance in the globally changing ocean[J].Prog Oceanogr,2015,134:432-450. [39] Polimene L,Rivkin R B,Luo Y W,et al.Modelling marine DOC degradation time scales[J].Natl Sci Rev,2018,5(4):468-474. [40] Ruppel C D,Kessler J D.The interaction of climate change and methane hydrates[J].Rev Geophys,2017,55(1):126-168. [41] Reeburgh W S.Oceanic methane biogeochemistry[J].Chem Rev,2007,107(2):486-513. [42] Crémière A,Lepland A,Chand S,et al.Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J].Nat Commun,2016,7:11509. [43] Vielstädte L,Karstens J,Haeckel M,et al.Quantification of methane emissions at abandoned gas wells in the Central North Sea[J].Mar Pet Geol,2015,68:848-860. [44] Crespo-Medina M,Meile C D,Hunter K S,et al.The rise and fall of methanotrophy following a deepwater oil-well blow-out[J].Nat Geosci,2014,7(6):423-427. [45] Karl D M,Church M J,Dore J E,et al.Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation[J].Proc Natl Acad Sci USA,2012,109(6):1842-1849. [46] Arístegui J,Gasol J M,Duarte C M,et al.Microbial oceanography of the dark ocean’s pelagic realm[J].Limnol Oceanogr,2009,54(5):1501-1529. [47] Baltar F,Arístegui J,Gasol J M,et al.Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic[J].Limnol Oceanogr,2009,54(1):182-193. [48] Reinthaler T,Van Aken H M,Herndl G J.Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior[J].Deep Sea Res Part II Top Stud Oceanogr,2010,57(16):1572-1580. [49] Herndl G J,Reinthaler T,Teira E,et al.Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean[J].Appl Environ Microbiol,2005,71(5):2303-2309. [50] Reinthaler T,Van Aken H,Veth C,et al.Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin[J].Limnol Oceanogr,2006,51(3):1262-1273. [51] Salazar G,Cornejo-Castillo F M,Benítez-Barrios V,et al.Glo-bal diversity and biogeography of deep-sea pelagic prokaryo-tes[J].ISME J,2016,10(3):596-608. [52] Sul W J,Oliver T A,Ducklow H W,et al.Marine bacteria exhibit a bipolar distribution[J].Proc Natl Acad Sci USA,2013,110(6):2342-2347. [53] Petro C,Starnawski P,Schramm A,et al.Microbial community assembly in marine sediments[J].Aquat Microb Ecol,2017,79(3):177-195. [54] Ducklow H W,Steinberg D K,Buesseler K O.Upper ocean carbon export and the biological pump[J].Oceanography,2001,14(4):50-58. [55] Nagata T.Organic Matter-bacteria Interactions in Seawater[M]//Kirchman D L.Microbial Ecology of the Oceans.2nd ed.Hoboken:John Wiley & Sons,2008:207-241. [56] Long R A,Azam F.Antagonistic interactions among marine pela-gic bacteria[J].Appl Environ Microbiol,2001,67(11):4975-4983. [57] Gram L,Grossart H P,Schlingloff A,et al.Possible quorum sensing in marine snow bacteria:Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow[J].Appl Environ Microbiol,2002,68(8):4111-4116. [58] Simon M,Grossart H P,Schweitzer B,et al.Microbial ecology of organic aggregates in aquatic ecosystems[J].Aquat Microb Ecol,2002,28(2):175-211. [59] Smith D C,Simon M,Alldredge A L,et al.Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution[J].Nature,1992,359(6391):139-142. [60] Borch N H,Kirchman D L.Protection of protein from bacterial degradation by submicron particles[J].Aquat Microb Ecol,1999,16(3):265-272. [61] Keil R G,Kirchman D L.Utilization of dissolved protein and amino acids in the northern Sargasso Sea[J].Aquat Microb Ecol,1999,18(3):293-300. [62] Rahav E,Silverman J,Raveh O,et al.The deep water of Eastern Mediterranean Sea is a hotspot for bacterial activity[J].Deep Sea Res Part II Top Stud Oceanogr,2019,164:135-143. [63] Kawasaki N,Benner R.Bacterial release of dissolved organic matter during cell growth and decline:Molecular origin and composition[J].Limnol Oceanogr,2006,51(5):2170-2180. [64] Ogawa H,Amagai Y,Koike I,et al.Production of refractory dissolved organic matter by bacteria[J].Science,2001,292(5518):917-920. [65] Lomstein B A,Jørgensen B B,Schubert C J,et al.Amino acid biogeo- and stereochemistry in coastal Chilean sediments[J].Geochim Cosmochim Acta,2006,70(12):2970-2989. [66] Lechtenfeld O J,Hertkorn N,Shen Y,et al.Marine sequestration of carbon in bacterial metabolites[J].Nat Commun,2015,6:6711. [67] Hertkorn N,Harir M,Koch B P,et al.High-field NMR spectroscopy and FTICR mass spectrometry:Powerful discovery tools for the molecular level characterization of marine dissolved organic matter[J].Biogeosciences,2013,10(3):1583-1624. [68] Hertkorn N,Benner R,Frommberger M,et al.Characterization of a major refractory component of marine dissolved organic mat-ter[J].Geochim Cosmochim Acta,2006,70(12):2990-3010. [69] Arístegui J,Duarte C M,Agustí S,et al.Dissolved organic carbon support of respiration in the dark ocean[J].Science,2002,298(5600):1967. [70] Lauro F M,McDougald D,Thomas T,et al.The genomic basis of trophic strategy in marine bacteria[J].Proc Natl Acad Sci USA,2009,106(37):15527-15533. [71] Lauro F M,Bartlett D H.Prokaryotic lifestyles in deep sea habi-tats[J].Extremophiles,2008,12(1):15-25. [72] Yokokawa T,Yang Y H,Motegi C,et al.Large-scale geographical variation in prokaryotic abundance and production in meso- and bathypelagic zones of the central Pacific and Southern Ocean[J].Limnol Oceanogr,2013,58(1):61-73. [73] Herndl G J,Reinthaler T.Microbial control of the dark end of the biological pump[J].Nat Geosci,2013,6(9):718-724. [74] Wuchter C,Abbas B,Coolen M J L,et al.Archaeal nitrification in the ocean[J].Proc Natl Acad Sci USA,2006,103(33):12317-12322. [75] Anantharaman K,Breier J A,Sheik C S,et al.Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria[J].Proc Natl Acad Sci USA,2013,110(1):330-335. [76] Swan B K,Martinez-Garcia M,Preston C M,et al.Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean[J].Science,2011,333(6047):1296-1300. [77] Stahl D A,de la Torre J R.Physiology and diversity of ammonia-oxidizing archaea[J].Annu Rev Microbiol,2012,66(1):83-101. [78] Brochier-Armanet C,Boussau B,Gribaldo S,et al.Mesophilic crenarchaeota:Proposal for a third archaeal phylum,the Thaumarchaeota[J].Nat Rev Microbiol,2008,6(3):245-252. [79] Martens-Habbena W,Berube P M,Urakawa H,et al.Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J].Nature,2009,461(7266):976-979. [80] Nunoura T,Takaki Y,Hirai M,et al.Hadal biosphere:Insight into the microbial ecosystem in the deepest ocean on Earth[J].Proc Natl Acad Sci USA,2015,112(11):E1230-E1236. [81] Karner M B,DeLong E F,Karl D M.Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J].Nature,2001,409(6819):507-510. [82] Nunoura T,Nishizawa M,Hirai M,et al.Microbial diversity in sediments from the bottom of the challenger deep,the mariana trench[J].Microbes Environ,2018,33(2):186-194. [83] Zhang Y,Qin W,Hou L,et al.Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean[J].Proc Natl Acad Sci USA,2020,117(9):4823-4830. [84] Sintes E,Bergauer K,De Corte D,et al.Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean[J].Environ Microbiol,2013,15(5):1647-1658. [85] Santoro A E,Saito M A,Goepfert T J,et al.Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation[J].Limnol Oceanogr,2017,62(5):1984-2003. [86] Santoro A E,Casciotti K L,Francis C A.Activity,abundance and diversity of nitrifying archaea and bacteria in the central California current[J].Environ Microbiol,2010,12(7):1989-2006. [87] Könneke M,Schubert D M,Brown P C,et al.Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation[J].Proc Natl Acad Sci USA,2014,111(22):8239-8244. [88] Wang Y,Huang J M,Cui G J,et al.Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep oc-ean[J].Environ Microbiol,2019,21(2):716-729. [89] Qin W,Amin S A,Martens-Habbena W,et al.Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation[J].Proc Natl Acad Sci USA,2014,111(34):12504-12509. [90] Offre P,Kerou M,Spang A,et al.Variability of the transporter gene complement in ammonia-oxidizing archaea[J].Trends Microbiol,2014,22(12):665-675. [91] Kim J G,Park S J,Sinninghe Damsté J S,et al.Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea[J].Proc Natl Acad Sci USA,2016,113(28):7888-7893. [92] Kuypers M M M,Blokker P,Erbacher J,et al.Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic ev-ent[J].Science,2001,293(5527):92-95. [93] Bhattarai S,Cassarini C,Lens P N L.Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction[J].Microbiol Mol Biol Rev,2019,83(3):e00074-18. [94] Knittel K,Boetius A.Anaerobic oxidation of methane:Progress with an unknown process[J].Annu Rev Microbiol,2009,63:311-334. [95] Cui M M,Ma A Z,Qi H Y,et al.Anaerobic oxidation of methane:An "active" microbial process[J].Microbiologyopen,2015,4(1):1-11. [96] Scheller S,Goenrich M,Boecher R,et al.The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of meth-ane[J].Nature,2010,465(7298):606-608. [97] Wegener G,Krukenberg V,Riedel D,et al.Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J].Nature,2015,526(7574):587-590. [98] Mozhaev V V,Heremans K,Frank J,et al.High pressure effects on protein structure and function[J].Proteins,1996,24(1):81-91. [99] Balny C,Masson P,Heremans K.High pressure effects on biological macromolecules:From structural changes to alteration of cellular processes[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):3-10. [100] Winter R.Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases,model biomembranes and proteins in solution at high pressure[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):160-184. [101] Bartlett D H.Pressure effects on in vivo microbial processes[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):367-381. [102] Xie Z,Jian H H,Jin Z,et al.Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress[J].Appl Environ Microbiol,2018,84(5):e02342-17. [103] Tahara E B,Navarete F D T,Kowaltowski A J.Tissue-,substrate-,and site-specific characteristics of mitochondrial reactive oxygen species generation[J].Free Radic Biol Med,2009,46(9):1283-1297. [104] Xiao X,Zhang Y.Life in extreme environments:Approaches to study life-environment co-evolutionary strategies[J].Sci China Earth Sci,2014,57(5):869-877. [105] Yang S S,Lv Y X,Liu X P,et al.Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J].Nat Commun,2020,11:3941. [106] Zhang Y,Henriet J P,Bursens J,et al.Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor[J].Bioresour Technol,2010,101(9):3132-3138. [107] Jiao N Z,Liu J H,Jiao F L,et al.Microbes mediated comprehensive carbon sequestration for negative emissions in the ocean[J].Natl Sci Rev,2020,7(12):1858-1860.