The excavation deformation mechanism and the seismic reinforcement effect evaluation of complex accumulation slope of a converter station in Southern Sichuan
YIN Dong1, WANG Shangjie2
1. State Grid Sichuan Electric Power Construction Company, Sichuan Chengdu 610065, China; 2. Sichuan Shuneng ElectricPower Co., Ltd., Sichuan Chengdu 610066, China
Abstract:The excavation deformation mechanism of the widely distributed complex accumulation slopes in the southwestern mountainous areas has a significant restriction effect on the construction of converter stations. To address the urgent needs of the converter station construction in Baihetan-Jiangsu UHV transmission project, the authors in this paper took the accumulation slope in the proposed station site as the research object, and adopted the deep displacement monitoring, in-situ test and FLAC3D numerical simulation methods to evaluale the excavation deformation mechanism of this accumulation slope and the seismic reinforcement effect under different design schemes and different pile parameters. Then the seismic reinforcement mechanism is analyzed. The results are as follows. ① The excavation of the complex accumulative slope of “multi-genetic type soil” in the converter station is prone to deformation, and the instability mode is “traction creep and tension failure mode”. ② The high and steep free face formed in the excavation process is the main factor leading to the accumulation slope deformation, and the high-water sensitivity of the accumulation slope soil is the internal inducement of the slope deformation aggravation after short duration heavy rainfall. ③ Under the two slope reinforcement schemes of circular anti-slide pile and rectangular anti-slide pile, the deformation amount of the slope body is significantly reduced, and the maximum deformation position in the slope body is located in the middle and back of the slope body. The stability coefficient of the accumulation body slope under natural and seismic conditions meets the design requirements. The use of rectangular anti-slide pile in the treatment of the accumulation body slope has higher anti-slide retaining and economic benefits. ④ The top deformation of the anti-slide pile is the largest under seismic condition, and the shear force and bending moment increase first and then decrease with the increase of seismic wave, and finally reach the maximum change trend. The maximum bending moment value is about 1/2 of the anti-slide pile body. The retaining design of slope should be combined with the distribution law of pile shear force and bending moment. The research results of this paper could provide some references for the design and construction of similar projects.
尹东, 王尚洁. 川南某换流站复杂堆积体边坡开挖变形机制及抗震加固效果评价[J]. 中国地质调查, 2024, 11(4): 101-113.
YIN Dong, WANG Shangjie. The excavation deformation mechanism and the seismic reinforcement effect evaluation of complex accumulation slope of a converter station in Southern Sichuan. , 2024, 11(4): 101-113.
[1] 廖红建,韩波,殷建华,等.人工开挖边坡的长期稳定性分析与土的强度参数确定[J].岩土工程学报,2002,24(5):560-564. Liao H J,Han B,Yin J H,et al.The long term stability of cut slope and determination of effective strength index of soils[J].Chinese Journal of Geotechnical Engineering,2002,24(5):560-564. [2] 胡明鉴,汪稔,张平仓.蒋家沟流域松散砾石土斜坡滑坡频发原因与试验模拟[J].岩石力学与工程学报,2002,21(12):1831-1834. Hu M J,Wang R,Zhang P C.Cause of frequent occurrence of gravel slope landslide and experiment simulation[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(12):1831-1834. [3] Kwon S,Wilson J W.Deformation mechanism of the underground excavations at the WIPP site[J].Rock Mechanics and Rock Engineering,1999,32(2):101-122. [4] Suh M,Koo M H,Choi S W,et al.Instability of an underground ancient tomb due to excavation and its relationship to the temperature and ground water[J].Geotechnical and Geological Engineering,2004,22(2):269-283. [5] 房浩,李媛,杨旭东,等.2010-2015年全国地质灾害发育分布特征分析[J].中国地质灾害与防治学报,2018,29(5):1-6. Fang H,Li Y,Yang X D,et al.Distribution characters of geo-hazards in China during the period of 2010-2015[J].The Chinese Journal of Geological Hazard and Control,2018,29(5):1-6. [6] Malan D F.Manuel Rocha medal recipient simulating the time-dependent behaviour of excavations in hard rock[J].Rock Mechanics and Rock Engineering,2002,35(4):225-254. [7] 冯君,周德培,李安洪.顺层岩质边坡开挖稳定性研究[J].岩石力学与工程学报,2005,24(9):1474-1478. Feng J,Zhou D P,Li A H.Research on stability of rock bedded slopes[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(9):1474-1478. [8] 文奎,王根,晏长根.地下水与边坡开挖对滑坡稳定性影响的分析[J].铁道建筑,2014(2):80-82,118. Wen K,Wang G,Yan C G.Analysis of influence of groundwater and slope excavation on landslide stability[J].Railway Engineering,2014(2):80-82,118. [9] 侯晓坤,李同录,李萍.开挖黄土高边坡的应力路径及变形破坏机制分析[J].岩土力学,2014,35(S2):548-555. Hou X K,Li T L,Li P.Analysis of stress path and deformation-failure mechanism of high cutting loess slope[J].Rock and Soil Mechanics,2014,35(S2):548-555. [10] 钟雨奕,苏海,潘皇宋.成仁高速红层分布区开挖边坡变形特征及机制[J].煤田地质与勘探,2017,45(2):96-100. Zhong Y Y,Su H,Pan H S.Deformation characteristics and mechanism of an excavation slope in red bed area of Chengren high-way[J].Coal Geology & Exploration,2017,45(2):96-100. [11] 王维早,许强,郑光,等.强降雨诱发缓倾堆积层边坡失稳离心模型试验研究[J].岩土力学,2016,37(1):87-95. Wang W Z,Xu Q,Zheng G,et al.Centrifugal model tests on sliding failure of gentle debris slope under rainfall[J].Rock and Soil Mechanics,2016,37(1):87-95. [12] 吴庆华,王珂.细/粗二元结构边坡角度与岩性特征对其阻隔降雨入渗的影响规律研究[J/OL].地球科学:1-10.(2023-09-12).https://www.doc88.com/p-97647644202007.html. Wu Q H,Wang K.Effect of angle and lithology on infiltrating to fine/coarse dual-structure slope under rainfall condi-tion[J/OL].Earth Sciences:1-10.(2023-09-12).https://www.doc88.com/p-97647644202007.html. [13] 程强,黄绍槟,周永江.公路深挖路堑边坡工程施工监测与动态设计[J].岩石力学与工程学报,2005,24(8):1335-1340. Cheng Q,Huang S B,Zhou Y J.Construction monitor and dynamic design of highway deep road cut slope[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(8):1335-1340. [14] 董治军,徐聪,施季红.某换流站边坡变形机理及应急治理设计[J].土工基础,2015,29(1):8-12. Dong Z J,Xu C,Shi J H.Mitigation of the excessive deformation of a slope for the electricity transformation station[J].Soil Engineering and Foundation,2015,29(1):8-12. [15] 徐聪,胡新丽,沙玉,等.填方边坡变形机制研究[J].安全与环境工程,2015,22(1):39-44. Xu C,Hu X L,Sha Y,et al.Study on deformation mechanism of a fill slope[J].Safety and Environmental Engineering,2015,22(1):39-44. [16] 杨明钰,陈红旗,祁小博,等.基于可靠度理论的地震滑坡运动距离预测模型[J].中国地质调查,2023,10(3):102-109. Yang M Y,Chen H Q,Qi X B,et al.Prediction model for the landslide movement distance induced by earthquake based on the reliability theory[J].Geological Survey of China,2023,10(3):102-109. [17] 张辉,莫思,谭海英.基于综合监测的滑坡应急治理效果评价——以贵州省桐梓县天池宫滑坡为例[J].中国地质调查,2023,10(2):87-93. Zhang H,Mo S,Tan H Y.Effect evaluation of landslide emergency treatment based on automatic monitoring:A case study of Tianchigong landslide in Tongzi county of Guizhou Province[J].Geological Survey of China,2023,10(2):87-93. [18] 刘腾,任蕊,匡野,等.四川省北川县崩滑灾害孕灾地质条件分析[J].中国地质调查,2022,9(6):59-66. Liu T,Ren R,Kuang Y,et al.Analysis on the disaster-pregnancy geological conditions of collapse and landslide in Beichuan County,Sichuan Province[J].Geological Survey of China,2022,9(6):59-66. [19] 涂义亮,陈晓虎,王星驰,等.基于连续-离散耦合强度折减法的边坡稳定性分析[J/OL].工程力学:1-12.http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2022.12.1047. Tu Y L,Chen X H,Wang X C,et al.Slope stability analysis by strength reduction method upon continuous-discrete coupling method[J/OL].Engineering Mechanics:1-12.http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2022.12.1047. [20] 魏云杰,王俊豪,胡爱国,等.澜沧江拉金神谷滑坡成灾机理分析[J].中国地质调查,2022,9(4):19-26. Wei Y J,Wang J H,Hu A G,et al.Analysis of formation mechanism of Lajinshengu landslide in Lancang River[J].Geological Survey of China,2022,9(4):19-26. [21] 田凯,姚品品,铁永波,等.地下水渗流场对库区滑坡稳定性影响的数值模拟——以白马库区羊角滩滑坡为例[J].中国地质调查,2022,9(4):74-81. Tian K,Yao P P,Tie Y B,et al.Numerical simulation study of the influence of groundwater seepage field on the stability of landslide in reservoir:A case study in Yangjiaotan landslide of Baimaku area[J].Geological Survey of China,2022,9(4):74-81. [22] 胡庆安,夏永旭,赵子胜.抗滑桩滑坡治理工程数值模拟研究[J].长安大学学报:建筑与环境科学版,2003,20(4):8-12. Hu Q A,Xia Y X,Zhao Z S.Finite element numerical simulation of slipping slope treatment by anti-slipping piles[J].Journal of Chang'an University:Architecture and Environmental Science Edition,2003,20(4):8-12. [23] 朱安龙,张胤,戴妙林,等.基于FLAC3D数值模拟的让压锚索边坡加固机理研究[J].岩土工程学报,2017,39(4):713-719. Zhu A L,Zhang Y,Dai M L,et al.Reinforcement mechanism of slopes with yielding anchor cables based on numerical simulation of FLAC3D[J].Chinese Journal of Geotechnical Engineering,2017,39(4):713-719. [24] 唐晓松,刘明维,叶海林.基于ABAQUS的抗滑桩三维有限元分析[J].地下空间与工程学报,2010,6(S2):1614-1618. Tang X S,Liu M W,Ye H L.3-dimension FEM analysis on anti-slide piles based on ABAQUS[J].Chinese Journal of Underground Space and Engineering,2010,6(S2):1614-1618. [25] 戴自航,徐祥.边坡抗滑桩设计计算的三维有限元法[J].岩石力学与工程学报,2012,31(12):2572-2578. Dai Z H,Xu X.3D finite element method for design computations of anti-slide piles[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(12):2572-2578. [26] 肖洪伟,黄兴,肖兵.输电线路含碎石粘性土边坡滑坡特性及预防措施[J].电力建设,2007,28(10):64-66,70. Xiao H W,Huang X,Xiao B.Land slide characteristics of gravel containing cohesive soil side slopes and its preventive measures[J].Electric Power Construction,2007,28(10):64-66,70. [27] 唐勇,余鑫,孙智慧.基于FLAC3D的抗滑桩抗震加固机理及模式研究[J].水力发电,2019,45(7):33-37. Tang Y,Yu X,Sun Z H.Study on seismic reinforcement mechanism and model of anti-slide piles based on FLAC3D[J].Water Power,2019,45(7):33-37. [28] 陈富坚,黄世斌,包惠明.抗滑桩加固工程的体系可靠度及其计算模型[J].工程抗震与加固改造,2009,31(6):15-18. Chen F J,Huang S B,Bao H M.The system reliability of anti-slide pile and their calculating models[J].Earthquake Resistant Engineering and Retrofitting,2009,31(6):15-18. [29] 冼进业,陈建林,李长冬,等.复合多层顺倾岩质边坡最优锚固角研究[J].人民长江,2023,54(10):221-227,242. Xian J Y,Chen J L,Li C D,et al.Optimal anchor angle of anchor in composite multi-layer bedding rock slope using unified strength theory[J].Yangtze River,2023,54(10):221-227,242. [30] 王存智,张炜,李晨冬,等.基于GIS和层次分析法的沙溪流域滑坡地质灾害易发性评价[J].中国地质调查,2022,9(5):51-60. Wang C Z,Zhang W,Li C D,et al.Susceptibility evaluation of landslide hazards of Shaxi river basin based on GIS and AHP[J].Geological Survey of China,2019,9(5):51-60. [31] 黄艳琴,李为乐,许洲,等.国道213汶川-松潘段滑坡隐患遥感识别与易发性评价[J].中国地质调查,2022,9(4):121-133. Huang Y Q,Li W L,Xu Z,et al.Remote sensing identification and susceptibility evaluation of landslide hazards in Wenchuan-Songpan section of National Highway 213[J].Geological Survey of China,2022,9(4):121-133. [32] 周毅,丁明涛,黄涛,等.芦山县滑坡灾害影响因素的空间分异性[J].中国地质调查,2022,9(4):45-55. Zhou Y,Ding M T,Huang T,et al.Spatial heterogeneity of influencing factors of landslide disasters in Lushan county[J].Geological Survey of China,2022,9(4):45-55. [33] 杨峰,薛桂澄,柳长柱,等.海南省澄迈县福山镇高铁站前道路土体滑坡的GEO5数值模拟研究[J].中国地质调查,2020,7(4):104-111. Yang F,Xue G C,Liu C Z,et al.GEO5 numerical simulation research on the soil landslide in the front road of Fushan high-speed railway station in Chengmai county of Hainan province[J].Geological Survey of China,2020,7(4):104-111.