|
|
Fractal theory of suitability zoning structure of shallow geothermal energy |
ZHOU Yang1, DENG Niandong2, WANG Feng3, MU Genxu1, LIU Jianqiang1 |
1. Shaanxi Geological Survey Center, Xi’an 710068, China; 2. College of Geology and Environment, Xi’an University of Scienceand Technology, Xi’an 710054, China; 3. Hubei Wing Yip line assessment Consulting Co. Ltd, Wu han 430000, China |
|
|
Abstract Shallow geothermal energy, as a new environmentally friendly energy that can be regenerated, has broad prospects in the development and utilization. The reductionism method which has been used in studying linear problems, can be converted into the nonlinear processing method which is more in line with the geological conditions of nature by using the fractal theory because of the complicated regional geological conditions. This article discusses the fractal dimension of suitability zoning structure of shallow geothermal energy occurrence conditions and the relationship between the fractal dimension and size. Besides, the impact of the geometric properties of the planar landform on the fractal dimension values is also discussed. This research shows that shallow geothermal energy suitability zoning structure have obvious fractal characters, and its fractal dimension reflects the tortuous degree of suitability zoning outline. And the fractal number and the irregular degree of contour line established a positive relation. This article provides a new method to deal with the nonlinear problem for shallow geothermal energy investigation and evaluation, and has a strong theoretical and practical significance in application of fractal theory and shallow geothermal energy development.
|
Received: 16 May 2016
|
|
|
|
|
[1] 陶庆法,胡杰.浅层地热能开发利用现状、发展趋势与对策[C]//国土资源部地质环境司.全国地热(浅层地热能)开发利用现场经验交流会论文集.北京:中国能源研究会地热专业委员会,2006,7:12-18. [2] 郑克棪.浅层地热能开发利用的世界现状及在我国的发展前景[C]//国土资源部地质环境司.全国地热(浅层地热能)开发利用现场经验交流会论文集.北京:中国能源研究会地热专业委员会,2006,4:25-28. [3] 冯超臣,黄文峰.山东省菏泽市聊城—兰考断裂带西部地区地热资源评价[J].中国地质调查,2015,2(8):55-59. [4] 张宗元,孙晓涛,王飞,等.临沂城区浅层地热能利用方式适宜性分区研究[J].山东国土资源,2015,31(8):42-44. [5] 张甫仁,朱方圆,彭清元,等.重庆主城区浅层地温能适宜性分区评价[J].重庆交通大学学报(自然科学版),2013,32(4):647-651. [6] 尼科里斯 G,普利高津 I.探索复杂性[M].罗久里,陈奎宁,译.2版.成都:四川教育出版社,1992. [7] 谢和平,陈至达.分形(fractal)几何与岩石断裂[J].力学学报,1988,20(3):264-271,290. [8] 董连科,王晓伟,王克钢,等.分形用于材料断裂韧性研究的不定性问题[J].高压物理学报,1990,4(2):118-122. [9] 龙期威.分形图形周界和面积的关系[J].高压物理学报,1990,4(4):259-262. [10] 谢和平,陈至达.岩石类材料裂纹分叉非规则性几何的分形效应[J].力学学报,1989,21(5):613-618. [11] 孙博玲.分形维数(Fractal dimension)及其测量方法[J].东北林业大学学报,2004,32(3):116-119. |
[1] |
ZHOU Yang, LI Feng, YAN Wenzhong, MU Genxu, LIU Jianqiang. Research on shallow geothermal energy resources occurrence rule of major cities in Guanzhong basin[J]. , 2016, 3(4): 12-18. |
[2] |
GUO Jian-qiang, WEN Dong-guang, ZHANG Sen-qi, XU Tian-fu, LI Xu-feng,DIAO Yu-jie, JIA Xiao-feng. Potential Evaluation and Demonstration Project of CO2 Geological Storage in China[J]. , 2015, 2(4): 36-46. |
|
|
|
|