|
|
Review on the inorganic geochemical methods of paleo-fluid study |
GUOJia1, 2, NIU Bo2, 3 |
1. China Railway Resources Exploration Co.LTD., China Railway Resources Group, Beijing 100039,China; 2.College of Geosciences, China University of Petroleum, Beijing 102249, China; 3. China International Engineering Consulting Corporation, Beijing 100044, China |
|
|
Abstract The study of paleo-fluid activity related to hydrocarbon accumulation helps us profoundly understand the oil and gas accumulation process. It has important significance on evaluating reservoir quality and analyzing paleo-fluid activity at different stages in oil and gas accumulation process for economic objectives. At present, petroleum geologists at home and abroad mainly apply inorganic geochemical methods (isotope geochemistry, element geochemistry and fluid inclusion analysis) to analyze paleo-fluid activity characteristics and its influences on hydrocarbon accumulation. On the basis of analyzing the previous research achievements, this paper summarizes the latest research progresses of inorganic geochemical methods. And these following conclusions are found: isotope geochemistry method is suitable for analyzing the paleo-fluid source and causes of formation; element geochemical method is beneficial to trace the migration of hydrocarbon fluid; fluid inclusion analysis technique combined with petrography is helpful to analyze migration time, stages, phase, pathway and accumulation regularity of oil and gas, which can also indicate the favorable direction of migration and accumulation. Using inorganic geochemical methods to analyze paleo-fluid activity should not be limited to a single method. Comprehensive utilization of a variety of inorganic geochemistry methods will be more beneficial to the comprehensive analysis of paleo-fluid activity.
|
Received: 22 April 2016
|
|
|
|
|
[1] Bjoflykke K.Fluid-flow processes and diagenesis in sedimentary basins[M]//Parnell J.Geofluids:Origin,Migration and Evolution of Fluids in Sedimentary Basins.London:Geological Society,Special Publications,1994. [2] 解习农,刘晓峰,赵士宝,等.异常压力环境下流体活动及其油气运移主通道分析[J].地球科学—中国地质大学学报,2004,29(5):589-595. [3] 蔡春芳,梅博文,马亭,等.塔里木盆地流体-岩石相互作用研究[M].北京:地质出版社,1997. [4] Buschaert S,Fourcade S,Cathelineau M,et al.Widespread cementation induced by inflow of continental water in the eastern part of the Paris basin:O and C isotopic study of carbonate cements[J].Applied Geochemistry,2004,19(8):1201-1215. [5] Dewever B,Swennen R,Cooreman M.Fluid flow in the Sicilian accretionary wedge:primary geochemical signatures or recrystallization mask[J].Journal of Geochemical Exploration,2006,89(1/3):83-86. [6] Caja M A,Permanyer A,Marfil R,et al.Fluid flow record from fracture-fill calcite in the Eocene limestones from the South-Pyrenean Basin (NE Spain) and its relationship to oil shows[J].Journal of Geochemical Exploration,2006,89(1/3):27-32. [7] 王大锐,张映红.渤海湾油气区火成岩外变质带储集层中碳酸盐胶结物成因研究及意义[J].石油勘探与开发,2001,28(2):40-42. [8] 董福湘,刘立,马艳萍.大港滩海地区沙一段下部砂岩储层中方解石胶结物碳、氧同位素研究[J].石油实验地质,2004,26(6):590-593. [9] 曹剑,胡文瑄,姚素平,等.准噶尔盆地石炭—二叠系方解石脉的碳、氧、锶同位素组成与含油气流体运移[J].沉积学报,2007,25(5):722-729. [10] 徐田武,曾溅辉,张永旺,等.大巴山前陆构造带主断裂碳酸盐岩碳、氧同位素特征及其对流体的响应[J].中国石油大学学报(自然科学版),2009,33(2):34-39,48. [11] 曾溅辉,孙占强,徐田武,等.大巴山前陆冲断带古水动力演化阶段及其对油气藏形成和保存的影响[J].现代地质,2010,24(6):1093-1101. [12] 李朋,任建业,阳怀忠,等.巴楚地区断裂带内热液流体活动及对碳酸盐岩改造的特征分析[J].大地构造与成矿学,2011,35(3):378-385. [13] 郭凯,曾溅辉,李元昊,等.陇东地区延长组构造裂缝方解石脉特征及其与烃类流体活动的关系[J].中国石油大学学报(自然科学版),2013,37(2):36-42,49. [14] 郭佳,曾溅辉,宋国奇,等.东营凹陷中央隆起带沙河街组碳酸盐胶结物发育特征及其形成机制[J].地球科学:中国地质大学学报,2014,39(5):565-576. [15] Keith W L,Weber J N.Carbon and oxygen isotopic composition of mollusk shells from marine and fresh water environment[J].Geochimica Et Cosmochimica Acta,1964,28:1757-1786. [16] Rossi C,Goldstein R H,Marfil R,et al.Diagenetic and oil migration history of the Kimmeridgian Ascla Formation,Maestrat Basin,Spain[J].Marine and Petroleum Geology,2001,18(3):287-306. [17] 胡文瑄,金之钧,张义杰,等.油气幕式成藏的矿物学和地球化学记录——以准噶尔盆地西北缘油藏为例[J].石油与天然气地质,2006,27(4):442-450. [18] 刘德汉.包裹体研究——盆地流体追踪的有力工具[J].地学前缘,1995,2:149-154. [19] Gregg J M,Shelton K L.Minor- and trace-element distributions in the Bonneterre dolomite (Cambrian),southeast Missouri:evidence for possible multiple-basin fluid sources and pathways during lead-zinc mineralization[J].GSA Bulletin,1989,101(2):221-230. [20] Varti-Mataranga M,Pe-Piper G.Geochemistry of upper Triassic black dolomites of the SE Peloponnese (Greece),and their relationship to the volcanic activity of the area[J].Neues Jahrbuch Fur Mineralogie-Monatshefte,1998,7:305-327. [21] 周景田.松辽盆地南部原油中微量金属元素分布特征并判断油气运移方向[J].大庆石油学院学报,1983,18(2):44-53. [22] 曹剑,王绪龙,胡文瑄,等.准噶尔盆地油水层无机地球化学响应与识别[J].石油学报,2012,33(3):361-366. [23] Bourdet J,Pironon J,Levresse G,et al.Petroleum accumulation and leakage in a deeply buried carbonate reservoir,Nispero field (Mexico)[J].Marine and Petroleum Geology,2010,27(1):126-142. [24] Suchy V,Heijlen W,Sykorova I,et al.Geochemical study of calcite veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic):evidence for widespread post-Variscan fluid flow in the central part of the Bohemian Massif[J].Sedimentary Geology,2000,131(3/4):201-219. [25] Fischer M P,Higuera-Díaz I C,Evans M A,et al.Fracture-controlled paleohydrology in a map-scale detachment fold:insights from the analysis of fluid inclusions in calcite and quartz veins[J].Journal of Structural Geology,2009,31(12):1490-1510. [26] 邱楠生,金之钧,胡文喧.东营凹陷油气充注历史的流体包裹体分析[J].石油大学学报(自然科学版),2000,24(4):95-97,103. [27] 任拥军,陈勇.东营凹陷民丰洼陷深部天然气储层酸性溶蚀作用的流体包裹体证据[J].地质学报,2010,84(2):257-262. [28] 蔡李梅,陈红汉,李纯泉,等.济阳坳陷东营凹陷沙三中亚段流体包裹体古流体势场恢复[J].石油与天然气地质,2009,30(1):17-25. [29] 邵先杰.川西地区有机流体包裹体产状、组分及成因序次分析[J].吉林大学学报(地球科学版),2006,36(5):820-824. |
|
|
|