|
|
A study on fluid inclusions within ankerites of quartz-vein gold deposits in southeastern Guizhou |
MU Yuliang1, WANG Ganlu2, FU Yong2, YIN Yingzi2 |
1. College of Earth Science, Chengdu University of Technology, Chengdu 610059, China; 2. College of Resource and Enviromental Engineering, Guizhou University, Guiyang 550003, China |
|
|
Abstract Ankerite is one of the main gangue minerals at main mineralization stage of quartz-vein gold deposits in southeastern Guizhou. It plays an important role in the migration and precipitation of gold and the characteristics of fluid inclusions within ankerite can reflect the ore-forming fluid character. The authors conducted experiments on the microscopic petrography observation, homogenization temperature and freezing point of fluid inclusions, and then calculated the inclusions salinity and density. Results show CO2 inclusions in ankerite are well developed; ore-forming fluid uniformity temperatures concentrate in 240-300 ℃ with average of 267.21 ℃, the salinity of ore-forming fluid is between 1.57%-12.96% (NaCl) with average of 15.31%(NaCl); and the mineralization density distribution ranges from 0.69 g/cm3 to 0.91 g/cm3, with average of 0.89 g/cm3. So the quartz-vein gold deposits of southeastern Guizhou are middle temperature hydrothermal deposits and the ore-forming fluid has the characteristics of high density and low salinity.
|
Received: 24 March 2017
|
|
|
|
|
[1] 卢焕章.CO 2 流体与金矿化:流体包裹体的证据[J].地球化学,2008,37(4):321-328. [2] 涂光炽.关于CO 2 若干问题的讨论[J].地学前缘,1996,3(3):53-62. [3] Chi G X,Dube B,Willamson K,et al.Formation of the Gampbell-Red Lake Gold deposit by H 2 O-poor,CO 2 -dominated fluid[J].Miner alium Deposita,2006,40(6/7):726-741. [4] 卢焕章.成矿流体[M].北京:北京科学技术出版社,1997:1-210. [5] 郭佳,牛博.古流体研究的无机地球化学方法综述[J].中国地质调查,2017,4(1):45-49. [6] 卢焕章,Guha J,方根保.山东玲珑金矿的成矿流体特征[J].地球化学,1999,28(5):421-437. [7] 李洪奎,于学峰,沈昆,等.胶东玲珑矿田石英脉型金矿床中流体包裹体特征研究[J].山东国土资源,2012,28(11):1-8. [8] 秦志鹏,汪雄武,周云,等.富CO 2 流体与金矿化的关系[J].矿物学报,2009,29(增刊1):240-241. [9] 范宏瑞,谢奕汉,王英兰.豫西上宫构造蚀变岩型金矿成矿过程中的流体-岩石反应[J].岩石学报,1998,14(4):529-541. [10] 卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004:1-492. [11] Phillips C N,Evans K A.Role of CO 2 in the formation of gold deposits[J].Nature,2004,429(6994):860-863. [12] Pokrovski G S,Tagirov B R,Schott J,et al.An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids[J].Chem Geol,2009,259(1/2):17-29. [13] 侯林,邓军,丁俊,等.四川丹巴燕子沟造山型金矿床成矿流体特征研究[J].地质学报,2012,86(12):1957-1971. [14] 彭建堂.湖南雪峰地区金成矿演化机理探讨[J].大地构造与成矿学,1999,23(2):144-151. [15] 邱小平,胡世兴,王军,等.河北小营盘石英-碳酸盐型金矿床成矿作用[J].地质学报,1997,71(4):350-359. [16] 余大龙,吴攀.锦屏花桥金矿床地质特征[J].贵州地质,1998,16(3):254-258. [17] 吴文明,郑杰,齐领弟,等.黔东平秋金矿含金石英脉包裹体地球化学[J].贵州地质,2011,28(3):194-196,199,236. [18] 余大龙.黔东八克金矿地质地球化学特征研究[J].地质地球化学,1997(1):12-17. [19] 吴文明.黔东锦屏县主要金矿流体包裹体特征研究[D].贵州:贵州大学,2009. [20] 吴攀,余大龙.锦屏钟林断层带石英脉型金矿包裹体特征研究[J].贵州地质,1997,14(4):321-327. [21] 赖晓英,何明勤.贵州省锦屏县八克金矿流体包裹体地球化学研究[J].贵州大学学报:自然科学版,2010,27(2):33-36. [22] 余大龙,周珍国,陶红.黔东金头金矿矿床地质及包裹体特征初探[J].贵州地质,1991,8(3):241-251. [23] 田洪德,黄道光,余清平.黔东南天柱县坑头金矿地质特征及成因分析[J].贵州地质,2011,28(4):265-271. [24] 吴攀,叶俊,余大龙.黔东同古金矿床成矿流体地球化学探讨[J].黄金,2005,26(10):7-10. [25] 余超,余大龙.黔东南罗里金矿包裹体特征及成因探讨[J].地质与勘探,2011,47(5):856-864. [26] 刘翔,何明勤.贵州省天柱县地豆冲金矿流体包裹体特征研究[J].贵州大学学报(自然科学版),2012,29(2):49-53. [27] 卢焕章,王中刚,吴学益,等.贵州东南部的地质构造与金矿床的关系[J].地质学报,2005,79(1):98-105. [28] 余大龙.黔东脉型金矿构造控矿规律研究——兼论黔东寻找大型金矿的方向[J].贵州地质,1993,10(4):308-313. [29] 许志斌,朱笑青,陈文一.黔东南花桥金矿床地质特征、控矿因素及找矿方向[J].矿物学报,2008,28(4):461-466. [30] 金廷福,潘佩荣,李其,等.黔东南同古金矿床地质特征再认识[J].地质找矿论丛,2014,29(3):375-380. [31] Woods T L,Garrels R M.Calculated aqueous-solution-solid-solution relations in the low-temperature system CaO-MgO-FeO-CO 2 -H 2 O[J].Geochim Cosmochim Acta,1992,56(8):3031-3043. [32] Bodnar R J.A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusion fluids[J].Econom Geol,1983,78(3):535-542. |
|
|
|