|
|
Deep exploration technology and prospecting direction for lithium energy metal |
WNAG Denghong, SUN Yan, LIU Xifang, TIAN Shihong, DAI Jingjing, LIU Lijun, MA Shengchao |
Key Laboratory of Metallogeny and Mineral Resource Assessment, Ministry of Land and Resources; Institute of Mineral Resource, Chinese Academy of Geological Sciences, Beijing 100037, China |
|
|
Abstract With the rapid development of new energy automobile industry and the breakthroughs of controlled fusion technology, the strategic position of lithium continues to improve. Although domestic lithium reserves in salt lake deposits are huge in China, the development and utilization technology still needs to be improved. There have been great breakthroughs in prospecting for hard rock type lithium in Jiajika of Sichuan, but the general level of prospecting is still very low, especially that most drilling depths are less than 300 m. The external dependence of lithium in China is up to 74%. So it is extremely urgent to carry out deep lithium energy metal exploration in the known lithium reservoirs. The important trends of deep lithium ore deposits exploration are studying metallogenic regularity of lithium energy metal, lithium isotope, geogas prospecting, deep-penetrating geochemical prospecting, potential evaluation techniques and prospecting methods. By summarizing the general features of different types, metallogenic condition and burial depth of lithium ores including Sichuan Jiajika, Xinjiang Kalu’an, Sichuan Huangjinkou and Guizhou Dazhuyuan, the authors generalized the metallogenic regularity and distribution of lithium resources, and indicated prospecting direction as follows: prospecting deep lithium deposits in Jijika and Keeryin of Sichuan according to the model of "five floors + basement", predicting concealed rocks in Kalu’an of Xingjiang, prospecting the liquid lithium resource by co-exploration of potash and lithium in Huangjinkou of Sichuan, and prospecting the sediment-type lithium resource in Chongqing and Guizhou.
|
Received: 11 December 2017
|
|
|
|
|
[1] 路甬祥. 清洁、可再生能源利用的回顾与展望[J].科技导报,2014,32(28/29):15-26. [2] 游清治. 锂工业的发展与展望[J].新疆有色金属,2013,36(增刊2):147-149. [3] 王乃银. 令人垂青的金属能源[J].今日科技,1989(9):32. [4] 吴荣庆. 新能源稀有金属锂的保护与合理开发利用[J].中国金属通报,2009(42):38-39. [5] Signum B.Salar de Maricunga:Project revie[EB/OL].[2018-01-09].http://www.li3energy.com/projects/signum BOX/IVG-LIEGsignum BOX2011.pdf,2018:1-7. [6] 刘丽君,王登红,刘喜方,等.国内外锂矿主要类型、分布特点及勘查开发现状[J].中国地质,2017,44(2):263-278. [7] Paul W G,Pablo A M,Gregory A K,et al.Global lithium availability:A constraint for electric vehicles?[J].Journal of Industrial Ecology,2011:1-16. [8] 李建康,刘喜方,王登红.中国锂矿成矿规律概要[J].地质学报,2014,88(12):2269-2283. [9] 郑绵平,刘喜方.中国的锂资源[J].新材料产业,2007(8):13-16. [10] 龙宝林,董庆吉,张伟,等.中国矿产资源战略性勘查进展(2013-2014年)[J].中国地质调查,2014,1(3):15-21. [11] 王秀莲,李金丽,张明杰.21世纪的能源金属——金属锂在核聚变反应中的应用[J].黄金学报,2001,3(4):249-252. [12] 陈刚,张青莲,肖应凯,等.我国锂矿物中锂同位素丰度研究[J].化学通报,1990(9):33-35. [13] Galeschuk C,Vanstone P.Exploration techniques for rare-element pegmatite in the bird river greenstone belt,Southeastern Manitoba[M]//Milkereit B.Ore Deposits and Exploration Technology.Toronto,Canada,2007(7):823-839. [14] 王登红,唐菊兴,应立娟,等.“五层楼+地下室”找矿模型的适用性及其对深部找矿的意义[J].吉林大学学报(地球科学版),2010,40(4):733-738. [15] 许建祥,曾载淋,王登红,等.赣南钨矿新类型及“五层楼+地下室”找矿模型[J].地质学报,2008,82(7):880-887. [16] 王登红. 对华南矿产资源深部探测若干问题的探讨——以若干超大型矿床深部找矿突破为例[J].中国地质,2016,43(5):1585-1598. [17] 王登红,付小方.四川甲基卡外围锂矿找矿取得突破[J].岩矿测试,2013,32(6):987. [18] 刘丽君,付小方,王登红,等.甲基卡式稀有金属矿床的地质特征与成矿规律[J].矿床地质,2015,34(6):1187-1198. [19] 王登红,刘丽君,侯江龙,等.初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型[J].地学前缘,2017,24(5):1-7. [20] 付小方,袁蔺平,王登红,等.四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J].矿床地质,2015,34(6):1172-1186. [21] 唐国凡,吴盛先.四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告[R].成都:四川省地质矿产勘查开发局,1984. [22] Teng F Z,McDonough W F,Rudnick R L,et al.Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J].Earth Planet Sci Lett,2006,243(3/4):701-710. [23] 刘丽君,王登红,侯可军,等.锂同位素在四川甲基卡新三号矿脉研究中的应用[J].地学前缘,2017,24(5):167-171. [24] 童纯菡,梁兴中,李巨初.地气测量研究及在东季金矿的试验[J].物探与化探,1992,16(6):445-451. [25] 王学求. 勘查地球化学近十年进展[J].矿物岩石地球化学通报,2013,32(2):190-197. [26] 周四春,刘晓辉,胡波.地气场信息的地质学意义[J].物探与化探,2012,36(6):1044-1049. [27] 周四春,刘晓辉,董春涵,等.地气测量技术及在隐伏矿找矿中的应用研究[J].地质学报,2014,88(4):736-754. [28] 王登红,李建康.南岭成矿带深部探测的理论与实践[M].北京:地质出版社,2017. [29] 谢学锦,王学求.深穿透地球化学新进展[J].地学前缘,2003,10(1):225-238. [30] Wang X Q,Cheng Z Z,Lu Y X,et al.Nanoscale metals in Earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J].J Geochem Explor,1997,58(1):63-72. [31] 王学求. 地球气纳微金属测量的概念理论与方法[M].北京:地质出版社,1999:105-124. [32] 汪明启,高玉岩,张得恩,等.地气测量在北祁连盆地区找矿突破及其意义[J].物探与化探,2006,30(1):7-12. [33] 刘斌,周四春,葛良全,等.湘南千里山—骑田岭矿集区黄沙坪型铅锌矿地气异常特征及找矿意义[J].地球学报,2011,32(4):413-418. [34] 邹天人,李庆昌.中国新疆稀有及稀土金属矿床[M].北京:地质出版社,2006:1-284. [35] 马占龙,张辉,唐勇,等.新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究[J].地球化学,2015,44(1):9-26. [36] 周训,曹琴,尹菲,等.四川盆地东部高褶带三叠系地层卤水和温泉的地球化学特征及成因[J].地质学报,2015,89(11):1908-1920. [37] 王东升. 四川盆地卤水资源分级与分区概述[J].井矿盐技术,1984(2):14-19. [38] 王大纯,李慈君,杨立中,等.四川盆地深层地下卤水资源量评价及其方法的研究[R].北京:中国地质大学(北京),1990. [39] 林耀庭,陈绍兰.四川盆地地下卤水勘探开发前景展望[J].盐湖研究,2008,16(1):1-7,21. [40] 周游,倪师军,施泽明.四川盆地东北部某储卤构造深层卤水资源量容积法评价的改进模型研究[J].地球科学进展,2013,28(6):703-708. [41] 代晶晶,王登红,代鸿章,等.遥感技术在川西甲基卡大型锂矿基地找矿填图中的应用[J].中国地质,2017,44(2):389-398. [42] 徐志刚,陈毓川,王登红,等.中国成矿区带划分方案[M].北京:地质出版社,2008:138. [43] 王登红,李沛刚,屈文俊,等.贵州大竹园铝土矿中钨和锂的发现与综合评价[J].中国科学:地球科学,2013,43(1):44-51. [44] 王登红,王成辉,孙艳,等.我国锂铍钽矿床调查研究进展及相关问题简述[J].中国地质调查,2017,4(5):1-8. |
[1] |
WANG Denghong, WANG Chenghui, SUN Yan, LI Jiankang, LIU Shanbao, RAO Kuiyuan. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China[J]. , 2017, 4(5): 1-8. |
[2] |
PAN Zhongfang, ZHAO Xiaoming, WEI Daofang, XIE Xinquan, ZENG Chunfang, CHEN Xiqing. Main achievements and knowledge of mineral resources potential evaluation in Central-southern China[J]. , 2017, 4(1): 11-17. |
[3] |
ZHANG Zhaowei, LI Kan, ZHANG Jiangwei, QIAN Bing, WANG Yalei, YOU Minxin. Formation characteristics and prospecting direction of magmatic Ni-Cu sulfide deposits in China[J]. , 2016, 3(3): 7-15. |
|
|
|
|