|
|
Discussion on the relationship between Cenozoic magmatic activity and geotherm in Tibetan Plateau |
ZHANG Chaofeng1,2, SHI Qianglin3, ZHANG Lingjuan2 |
1. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069,China;; 2. No.203 Reaearch Institute of Nuclear Industry, Xianyang 712000, China; 3. Xi’an Construction Engineering Group Co.ltd, Xi’an 710065, China; |
|
|
Abstract There are abundant geothermal resources and nearly 700 geothermal display areas (points) in Tibetan Plateau with the characteristics of wide distribution, high temperature and great potentiality. It is necesssary to investigate the distribution regularity and causes of geothermal resources, in order to better evaluate the geothermal resources and explore the exploitation and development plan that conforms to the characteristics of the geothermal resources in Tibetan Plateau. On the basis of summarizing previous studies on the Cenozoic magmatic activity and the characteristics of geothermal resources in Tibetan Plateau, the authors analyzed the controlling factors of geothermal resources distribution from the perspective of geological evolution of the Tibetan Plateau, and discussed the relationship between Cenozoic magmatic activity and the geothermal resources spatial distribution. They focused on the relationship between the geothermal regionalization of Zangnan and the magmatic activity of the Yarlung Zangbo Suture Zone. The results show that the geothermal activity in Tibetan Plateau is controlled by the geological tectonic evolution. And the geothermal activity in southern region is stronger than that in the northern region. The main active area of geothermal activity is the intersection of the EW regional tectonic suture zone and the NS deep fault. The magmatic activity provides the heat source for geothermal resources in the study area.
|
Received: 29 December 2017
|
|
|
|
|
[1] 汪集暘,龚宇烈,陆振能,等.从欧洲地热发展看我国地热开发利用问题[J].新能源进展,2013,1(1):1-6. [2] 陈墨香. 华北地热[M].北京:科学出版社,1988:11-47. [3] 陈墨香. 中国地热资源[M].北京:科学出版社,1994:5-27. [4] 刘金侠,谷雪曦,李欣,等.我国地热能开发利用现状、问题与展望[J].建设科技,2015(8):27-30. [5] 刘金侠,王燕霞.推进我国地热能利用大发展[J].中国石化,2012(12):30-32. [6] 朱家玲. 地热能开发与应用技术[M].北京:化学工业出版社,2006:1-45. [7] 张梅桂,孙法德,谭世燕.地热资源及其科学利用[J].油气田地面工程,2004,23(4):37-38. [8] 廖忠礼,廖光宇,潘桂棠,等.西藏阿里地热资源的分布特点及开发利用[J].中国矿业,2005,14(8):43-46. [9] 王东升,王经兰.中国地下热水的基本类型和成因特征[J].第四纪研究,1996,16(2):139-146. [10] 欧阳埏. 中国地热成因的研究[C]//中国科学院地球物理研究所论文摘要集.北京:中国岩石力学与工程学会,1989. [11] 何世春. 中国地下热水成因类型及其特征和应用[C]//计算机在地学中的应用国际讨论会论文摘要集.北京:中国地球物理学会,1991:111-117. [12] 中国科学院青藏高原综合科学考察队.西藏地热[M].北京:科学出版社,1984. [13] 张丽红,郭正府,郑国东,等.藏南新生代火山-地热区温室气体的释放通量与成因——以谷露—亚东裂谷为例[J].岩石学报,2017,33(1):250-266. [14] 王鹏,陈晓宏,沈立成,等.西藏地热异常区热储温度及其地质环境效应[J].中国地质,2016,43(4):1429-1438. [15] 吕苑苑,郑绵平,赵平,等.滇藏地热带地热水硼同位素地球化学过程及其物源示踪[J].中国科学:地球科学,2014,44(9):1968-1979. [16] 刘昭,蔺文静,张萌,等.西藏尼木—那曲地热流体成因及幔源流体贡献[J].地学前缘,2014,21(6):356-371. [17] 沈立成,伍坤宇,肖琼,等.西藏地热异常区CO2脱气研究:以朗久和搭格架地热区为例[J].科学通报,2011,56(26):2198-2208. [18] 白嘉启,梅琳,杨美伶.青藏高原地热资源与地壳热结构[J].地质力学学报,2006,12(3):354-362. [19] 李振清,侯增谦,聂凤军,等.西藏地热活动中铯的富集过程探讨[J].地质学报,2006,80(9):1457-1464. [20] 周肃,莫宣学,赵志丹,等.西藏南部羊应乡后碰撞火山岩40Ar/39Ar年龄及其地质意义[J].自然科学进展,2004,14(12):46-53. [21] 赵平,谢鄂军,多吉,等.西藏地热气体的地球化学特征及其地质意义[J].岩石学报,2002,18(4):539-550. [22] 鲁连仲. 西藏地热活动的地质背景分析[J].地球科学: 中国地质大学学报,1989,14(增刊1):53-59. [23] 孙红丽,马峰,刘昭,等.西藏高温地热显示区氟分布及富集特征[J].中国环境科学,2015,35(1):251-259. [24] 康文华,李德禄,白嘉启.西藏羊八井热田地热地质[J].中国地质科学院地质力学研究所所刊,1985(6):17-79. [25] 魏斯禹,张致和,滕古文,等.喜马拉雅地热带的活动特征与板块构造[J].地震研究,1983,6(4):577-590. [26] 佟伟,章铭陶.西藏的地热活动特征及其对高原构造模式的控制意义[J].北京大学学报,1982(1):89-98,114. [27] 西藏地矿局地热地质大队.西藏自治区地热资源区划[R].1990. [28] 西藏地矿局地热地质大队.西藏自治区尼木—那曲地热带地热调查报告[R].1991. [29] 西藏自治区地勘局地热地质大队.西藏地热现状评价和区划[R].2011. [30] 廖志杰. 西藏地热活动的背景及热源问题的讨论[J].北京大学学报,1982(2):70-78. [31] 佟伟,章铭陶,张知非.西藏地热[M].北京:科学出版社,1981. [32] 韩同林. 试论藏南活动构造与地热的关系[M]//喜马拉雅地质文集编辑委员会.喜马拉雅地质II.北京:地质出版社,1990:45-58. [33] 李家振,孙善平,张有瑜,等.西藏羊应乡地热田形成特点及评价探讨[J].现代地质,1994,8(1):49-56. [34] 廖志杰,赵平.滇藏地热带-地热资源和典型地热系统[M].北京:科学出版社,1999:1-147. [35] 潘桂棠,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002,21(11):701-707. [36] 多吉. 羊八井高温地热田的深部勘探[M]//郑克棱.中国地热勘查开发100例.北京:地质出版社,2005. [37] 罗照华,莫宣学,侯增谦,等.青藏高原新生代形成演化的整合模型——来自火成岩的约束[J].地学前缘,2006,13(4):196-211. [38] 莫宣学. 岩浆作用与青藏高原演化[J].高校地质学报,2011,17(3):351-367. [39] 刘栋. 青藏高原后碰撞钾质-超钾质岩石的地球化学特征与岩石成因[D].北京:中国地质大学(北京),2017. [40] 何梅兴,张小博,杜炳锐,等.西藏羌塘龙尾湖地区音频大地电磁测深调查[J].工程地球物理学报,2014,11(3):333-337. [41] 闫永利,马晓冰,陈赟,等.西藏错勤—申扎剖面大地电磁测深研究[J].地球物理学报,2012,55(8):2636-2642. [42] 卢景奇,何梅兴,方慧,等.西藏洞错盆地大地电磁测深电性特征[J].物探与化探,2010,34(6):787-790,794. [43] 叶高峰,金胜,魏文博,等.西藏高原中南部地壳与上地幔导电性结构[J].地球科学: 中国地质大学学报,2007,32(4):491-498. [44] 魏文博,金胜,叶高峰,等.藏北高原地壳及上地幔导电性结构——超宽频带大地电磁测深研究结果[J].地球物理学报,2006,49(4):1215-1225. [45] 魏文博,陈乐寿,谭捍东,等.关于印度板块俯冲的探讨——据INDEPTH-MT研究结果[J].现代地质,1997,11(3):379-386. [46] 张胜业,魏胜,王家映,等.西藏羌塘盆地大地电磁测深研究[J].地球科学: 中国地质大学学报,1996,21(2):198-202. [47] 侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报,2009,83(12):1779-1817. [48] 侯增谦,赵志丹,高永丰,等.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据[J].岩石学报,2006,22(4):761-774. [49] 李振清,杨志明,朱祥坤,等.西藏驱龙斑岩铜矿铜同位素研究[J].地质学报,2009,83(12):1985-1996. [50] 张旗,王焰,刘伟,等.埃达克岩的特征及其意义[J].地质通报,2002,21(7):431-435. |
[1] |
QIN Yaojun, CHUAI Yunxiang, ZHAO Jichu. Analysis on exploitation and utilization of geothermal resources of Guantao Formation geothermal reservoir in Gudao oilfield[J]. , 2018, 5(3): 11-16. |
[2] |
YANG Rongkang, LUO Wei, PEI Yongwei, WANG Qian. Distribution and fluids hydrochemistry characteristics of hydrothermal geothermal resources in Guizhou Province[J]. , 2018, 5(2): 38-44. |
[3] |
LIU Chunhua, WANG Wei, WEI Zhengrun. Analysis of hydrothermal geothermal resources and its prospect of development and utilization in Shandong[J]. , 2018, 5(2): 51-56. |
[4] |
CUI Yufeng, ZHANG Jie, YIN Tao, SHI Meng, BI Jianxin. Discussion on distribution of geothermal resources and locating wells methods of geothermal exploration in Eastern Shandong Province[J]. , 2018, 5(2): 86-92. |
[5] |
RU Hongjiu, LIU Donglin, HU Huichuan, SHEN Jian. Evaluation and comprehensive study of geothermal resources in Tianjin[J]. , 2018, 5(2): 25-31. |
[6] |
SHI Jie, LU Chengxin, LI Qinghai, CHANG Zhiyong. Progress in research on the geothermal resources in Taxkorgan Valley, Xinjiang[J]. , 2018, 5(2): 8-10. |
|
|
|
|