|
|
Ages and geological significance of the river terrace of Datong River in Qilian Mountains |
YU Hang1, BU Fan1, HU Daogong2, ZHANG Xujiao3, YANG Jinzhong1 |
1.China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China; 2.Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; 3.China University of Geosciences(Beijing), Beijing 100083, China |
|
|
Abstract Qilian Mountains are the key study areas for tectonic deformation and uplift of Tibetan Plateau. Since Early Pleistocene, the river terrace of Datong River has been the record of tectonic uplift and climate changes in Qilian Mountains. Ascertaining the ages and geological significance of the river terrace of Datong River is of great significance in analyzing the regional structure and climate changes in Qilian Mountains. Using ESR dating technique, the authors measured the section samples in Jiangcang Area of Datong River and acquired the rock strata ages, which were (42±4) ka B.P., (71±5) ka B.P., (121±12) ka B.P., (210±20) ka B.P. and (602±60) ka B.P. respectively. According to the dating results, the authors confirmed the section was formed in the environment of fluvial facies deposition, and that its ages were the periods of Jiuquan conglomerate and Gobi conglomerate in Middle and Late Pleistocene. And it showed that the river terrace of Datong River has been formed before 542~662 ka B.P., and that its formation might be influenced by the basin-mountain movement after Miocene Baiyanghe Formation or by the wrinkle deformation in Early Pleistocene in Qilian Mountains. The authors calculated the uplift rate via the dating results, and the results showed that the uplift rate was increasing from the late period of Middle Pleistocene to the middle period of Late Pleistocene, which reflected the enhancement of tectonic movement and climate changes in Datong River Basin and the rapid uplift of Jiangcang Area in Qilian Mountains. These conclusions could provide new proofs for the viewpoint that the northeastern edge of Qinghai-Tibet Plateau has expanded in both area and volume.
|
Received: 11 July 2017
|
|
|
|
|
[1] 杨景春. 地貌学教程[M].北京:高等教育出版社,1985:60-64. [2] 程绍平,邓起东,李传友,等.流水下切的动力学机制、物理侵蚀过程和影响因素:评述和展望[J].第四纪研究,2004,24(4):421-429. [3] Bull W B.Stream-terrace genesis:Implications for soil development[J].Geomorphology,1990,3(3/4):351-367. [4] Bridgland D R.River terrace systems in north-west Europe:An archive of environmental change,uplift and early human occupation[J].Quat Sci Rev,2000,19(13):1293-1303. [5] 胡春生,潘保田,高红山,等.最近150 ka河西地区河流阶地的成因分析[J].地理科学,2006,26(5):603-608. [6] 李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学(D辑):地球科学,1996,26(4):316-322. [7] 李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-391. [8] 李吉均,方小敏.青藏高原隆起与环境变化研究[J].科学通报,1998,43(15):1569-1574. [9] 鹿化煜,安芷生,王晓勇,等.最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J].中国科学(D辑):地球科学,2004,34(9):855-864. [10] 刘兴旺,袁道阳,葛伟鹏.兰州黄河阶地高精度GPS测量与构造变形研究[J].西北地震学报,2007,29(4):341-346,351. [11] 刘小凤,刘百篪.应用“构造-气候旋回”年代学方法确定河流阶地形成时代的初步研究[J].西北地震学报,2001,23(4):395-403. [12] 侯元才,许伟林,俞建,等.青藏高原东北缘1.2 Ma B.P.以来各阶段古气候演变[J].青海地质,2001(增刊1):10-16. [13] 苏建平,仵彦卿,李麒麟,等.第四纪以来酒泉盆地环境演变与祁连山隆升[J].地球学报,2005,26(5):443-448. [14] 傅开道,方小敏,高军平,等.青藏高原北部砾石粒径变化对气候和构造演化的响应[J].中国科学(D辑):地球科学,2006,36(8):733-742. [15] 汤愁苍,刘晓东.一个新的划分第四纪的标志:高原季风演变的地质环境后果[J].第四纪研究,1995(1):82-88. [16] Watchman A L,Twidale C R.Relative and ‘absolute’dating of land surfaces[J].Earth-Sci Rev,2002,58(1-2):1-49. [17] 候康明,邓起东,刘百篪.冬青顶背斜的变形形式/变形幅度及形成机理[G]//汪一鹏.活动断裂研究(第6辑).北京:地质出版社,1998:88-96. [18] 杨景春,谭利华,李有利,等.祁连山北麓河流阶地与新构造演化[J].第四纪研究,1998(3):229-237. [19] 郑文涛,杨景春,段锋军.武威盆地晚更新世河流阶地变形与新构造活动[J].地震地质,2000,22(3):318-328. [20] Tissoux H,Falguères C,Volnchet P,et al.Potential use of Ti-center in ESR dating of fluvial sediment[J].Quat Geochronol,2007,2(1):367-372. [21] 袁璐璐,汪明启,胡佳乐.第四纪沉积物测年新进展[J].中国地质调查,2014,1(1):46-51. [22] 丁秋红,王杰,李晓海,等.内蒙古扎鲁特旗地区更新世地层划分[J].中国地质调查,2015,2(7):24-29. [23] 潘保田,高红山,李炳元,等.青藏高原层状地貌与高原隆升[J].第四纪研究,2004,24(1):50-57. [24] 邬光剑. 祁连山东段0.8 Ma以来的构造隆升与气候变化[D].兰州:兰州大学,2001:35-41. [25] 高红山,潘保田,邬光剑,等.祁连山东段冲积扇的发育时代及其成因[J].兰州大学学报:自然科学版,2005,41(5):1-4. [26] 潘保田,邬光剑,王义祥,等.祁连山东段沙沟河阶地的年代与成因[J].科学通报,2000,45(24):2669-2675. [27] Gaudemer Y,Tapponnier P,Meyer B,et al.Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the‘Tianzhu gap’,on the western Haiyuan fault,Gansu (China)[J].Geophys J Int,1995,120(3):599-645. [28] 陈杰,Wyrwoll K H,卢演俦,等.祁连山北缘玉门砾岩的磁性地层年代与褶皱过程[J].第四纪研究,2006,26(1):20-31. [29] Maddy D,Bridgland D,Green C P.Crustal uplift in southern England:Evidence from the river terrace records[J].Geomorphology,2000,33(3/4):167-181. [30] Burbank D W,Leland J,Fielding E,et al.Bedrock incision,rock uplift and threshold hillslopes in the northwestern Himalayas[J].Nature,1996,379(6565):505-510. [31] Leland J,Reid M R,Burbank D W,et al.Incision and differential bedrock uplift along the Indus River near Nanga Parbat,Pakistan Himalaya,from 10Be and 26Al exposure age dating of bedrock straths[J].Earth Planet Sci Lett,1998,154(1/4):93-107. [32] 袁道阳,张培震,刘小龙,等.青海鄂拉山断裂带晚第四纪构造活动及其所反映的青藏高原东北缘的变形机制[J].地学前缘,2004,11(4):393-402. [33] Pan B T,Wu G J,Wang Y X,et al.Age and genesis of the Shagou River terraces in eastern Qilian Mountains[J].Chin Sci Bull,2000,46(6);510-515. [34] Tapponnier P,Meyer B,Avouac J P,et al.Active thrusting and folding in the Qilian Shan,and decoupling between upper crust and mantle in northeastern Tibet[J].Earth Planet Sci Lett,1990,97(3/4):382-403. [35] An Z S,Kutzbach J E,Prell W L,et al.Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J].Nature, 2001,411(6833):62-66. [36] Mulch A,Chamberlain C P.Earth science:The rise and growth of Tibet[J].Nature,2006,439(7077):670-671. [37] Rowley D B,Currie B S.Palaeo-altimetry of the late Eocene to Miocene Lunpola basin,Central Tibet[J].Nature,2006,439(7077):677-681. |
|
|
|