|
|
Quantitative tracer test and analysis of the underground river system in Hebao of Hezhou City |
HE Shuorong1, XIN Weidong2, KANG Zhiqiang3, BEI Weichang3 |
1. Sichuan Institute of Geological Engineering Investigation, Chengdu 610072, China; 2. Shaanxi Third Institute of Geological and Mineral, Baoji 721300, China; 3. Guangxi Institute of Geological Survey, Nanning 530023, China |
|
|
Abstract Tracer test is an effective and widely used technical method in karst hydrogeology survey. In order to determine the karst aquifer structure, the authors made the tracer test on the main conduit of Hebao underground river in Hezhou of Guangxi, used high-precision online monitoring technology. Fluorescein sodium is used as tracer, and the GGUN-FL30 field fluorescence spectrophotometer is used as online monitoring equipment. The test results show that the underground river between the Entrance (S1) and the Exit (S4) is denoted by pipeline flow, and the structure is simple without any other underground water bodies such as a karst lake. The tracer recovery rate is only 63.18 %, indicating that the underground river has other discharge pathways (maybe subsurface flow). Based on Qtracer2 data analysis, the maximum flow velocity of Hebao underground river in dry season is 156.00 m/h and the average flow velocity is 48.09 m/h. Water storage of karst conduit is 26 714 m3. The conduit cross-sectional area is 13.70 m2 and the tube diameter is 4.18 m. The conduit system is charactered by dispersion coefficient of 0.505 m2/s, longitudinal dispersion of 37.81 m, friction factor of 0.178, Reynolds number of 48 937, Sherwood number of 1 875.4 and Schmidt number of 1 140. It is shown that karst is well developed and nonuniformity of aquifer is strong in Hebao underground river. So the underground river system is an single conduit system. The groundwater flow is a turbulent flow, which has being bearing pressure in part. The research data and achievements can provide some reference to the numerical model construction of the underground river system.
|
Received: 21 June 2018
|
|
|
|
|
[1] 杨立铮. 贵州普定后寨地下河岩溶水运动特征[J].中国岩溶,1982,1(1):18-26. [2] 王腊春,许有鹏,张立峰,等.贵州普定后寨地下河流域岩溶水特征研究[J].地理科学,2000,20(6):557-562. [3] 何宇彬,徐超.喀斯特隙流水与管流水的耦合及转化关系研究[J].中国岩溶,1995,14(2):150-160. [4] 杨勇. 后寨河流域岩溶含水介质结构与地下径流研究[J].中国岩溶,2001,20(1):17-20. [5] Yuan D X.On the heterogeneity of karst water[C]//Proceedings of the 1985 Ankara-Antalya Symposium.Turkey:IAHS Publication,1985,161:281-292. [6] 高阳,张庆松,原小帅,等.地质雷达在岩溶隧道超前预报中的应用[J].山东大学学报:工学版,2009,39(4):82-86. [7] 夏日元,蒋忠诚,邹胜章,等.岩溶地区水文地质环境地质综合调查工程进展[J].中国地质调查,2017,4(1):1-10. [8] 杨立铮,刘俊业.试用示踪剂浓度-时间曲线分析岩溶管道的结构特征[J].成都地质学院学报,1979,6(4):44-49. [9] Goldscheider N,Meiman J,Pronk M,et al.Tracer tests in karst hydrogeology and speleology[J].Int J Speleol,2008,37(1):27-40. [10] 陈余道,程亚平,王恒,等.岩溶地下河管道流和管道结构及参数的定量示踪——以桂林寨底地下河为例[J].水文地质工程地质,2013,40(5):11-15. [11] 张德忠,马云青,苏永强.河北平原地热流体可采量计算方法及岩溶热储分布规律研究[J].中国地质调查,2018,5(2):78-85. [12] 黄之巍. 广西灵水岩溶大泉水文地质条件[J].中国地质调查,2017,4(5):74-81. [13] 邓振平,周小红,何师意,等.西南岩溶石山地区岩溶地下水示踪试验与分析——以湖南湘西大龙洞为例[J].中国岩溶,2007,26(2):163-169. [14] 李敬兰,李益民.广西龙布排泥库地下水多元示踪试验研究[J].安全与环境工程,2004,11(1):59-62. [15] 汪进良,姜光辉,侯满福,等.自动化监测电导率在盐示踪试验中的应用——以云南八宝水库盐示踪试验为例[J].地球学报,2005,26(4):371-374. [16] 李择卫. 地下水示踪试验在水库岩溶渗漏分析中的应用[J].人民长江,2013,44(增刊1):115-116,167. [17] 邓振平,周小红,邹胜章,等.在线监测仪在岩溶地下水示踪实验中的应用——广西临桂县罗锦地下水示踪试验[J].水资源保护,2009,25(2):75-78. [18] 杨平恒,罗鉴银,彭稳,等.在线技术在岩溶地下水示踪试验中的应用——以青木关地下河系统岩口落水洞至姜家泉段为例[J].中国岩溶,2008,27(3):215-220. [19] 徐尚全,王鹏,焦杰松,等.高精度在线示踪技术在岩溶地下水文调查中的应用[J].工程勘察,2013,41(2):40-44. [20] 杨平恒,袁道先,蓝家程,等.基于在线高分辨率监测和定量计算的岩溶地下水示踪试验[J].西南大学学报:自然科学版,2013,35(2):103-108. [21] Schnegg P A,Costa R.Tracer tests made easier with field fluorometers[J].Bull Dhydrogeol,2002,20(5):1-2. [22] Field M S.The QTRACER2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrologic Systems[M].Washington:United States Environmental Protection Agency,2002:29-114. [23] 仵彦卿. 地下水系统的基本概念与组成[J].西安地质学院学报,1990,12(4):88-91. |
[1] |
ZHANG Hailin, WANG Zhong, PANG Wei, TENG Yue, QI Huan. Using sulfur and oxygen isotope to trace the source of sulphate in Baotuquan spring area of Jinan[J]. , 2019, 6(1): 75-80. |
[2] |
LIANG Yong-ping, ZHAO Chun-hong, TANG Chun-lei, WANG Wei-tai, SHEN Hao-yong. Progress of Hydrogeology and Environmental Geology Survey in Karst Area of Northern China: An Example from Karst Area in Western Hills of Beijing[J]. , 2015, 2(8): 1-8. |
|
|
|
|