|
|
Effects of huge anthropogenic carbon emission: Inspiration from comprehensive investigations of Tibetan Plateau |
LIU Yan |
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China |
|
|
Abstract The effects of huge anthropogenic carbon emission have caused huge controversy. Only by studying the change of atmospheric CO2 levels and environment since the Eocene, can we correctly understand the consequences of human’s huge carbon emissions. Numerous studies have revealed that the atmospheric CO2 concentrations have dropped dramatically from Early Eocene to the end of Oligocene, leading to the decrease of temperature and the formation of continental glaciers. And the atmospheric CO2 concentrations have increased slowly in a long time under rather low and invariant levels since the Miocene. However, it is still unknown about the mechanisms which lead to the changing processes, and the place where the water that formed the continental glaciers comes from. Therefore, this research focused on the perspectives of deep carbon cycling, surface water cycling, and environmental changing of Tibetan Plateau to analyze the effects of anthropogenic huge carbon emission. During the rising process of Tibetan Plateau, with the methods of chemical weathering of silicate rocks, plant photosynthesis, intracontinental subduction (buried), and fluid-rock interactions, large amounts of atmospheric CO2 were transferred into carbon-rich materials buried in the newly thickening crust of Tibetan Plateau. The atmospheric CO2 levels have therefore decreased greatly, leading to global cooling and dry surface layers of the continental interiors (including Tibetan Plateau, similarly hereinafter) by losing water, and then the continental glaciers were formed. From Late Oligocene to Miocene, Tibetan Plateau had the scale to change the atmosphere circulation and the Asian monsoon was finally formed. The drastic desertification of the internal plateau began to show and the captured CO2 decreased, which made a dynamic balance to the CO2 from the internal Tibetan Plateau. This dynamic balance was the main mechanism of atmospheric CO2 level change since Miocene. The long-term slow decline trend of atmospheric CO2 levels has been completely reversed by the huge anthropogenic carbon emission today. The liquid water released from the disappearing continental glaciers would come back to the cold and dry continental interiors in the form of atmospheric precipitation rather than oceans due to global warming. Tibetan Plateau would once again become a giant water tower, so that clean drinking water for more than three billion people would be substantially provided. The vast amount of CO2 emitted by human beings would be absorbed and solidified using above methods due to the sustained growth of Tibetan Plateau and the currently dry and cold desertification of continental interiors, which makes the atmospheric CO2 concentrations remain stably high in the future. At that time, all deserts would become oases, and the loess plateau would become a black soil plateau enriched in organic matters, which means the living environment would be greatly improved. However the PM 2.5 is difficult to spread and easy to form haze within the basin. The global mean sea level would rise due to the thermo-expansion of seawater with rate of 1 mm/a. Water will be circulated mainly between continental glaciers and inland surface layers, and has no relationship with the sea level. Therefore, the author concludes that the global warming caused by the huge anthropogenic carbon emission is more beneficial than harmful to human development.
|
Received: 09 April 2019
|
|
|
|
|
[1] Zachos J,Pagani M,Sloan L,et al.Trends,rhythms,and aberrations in global climate 65 Ma to present[J].Science,2001,292(5517):686-693. [2] Zachos J C,Dickens G R,Zeebe R E.An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J].Nature,2008,451(7176):279-283. [3] Pearson P N,Palmer M R.Atmospheric carbon dioxide concentrations over the past 60 million years[J].Nature,2000,406(6797):695-699. [4] Pagani M,Zachos J C,Freeman K H,et al.Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J].Science,2005,309(5734):600-603. [5] Pearson P N,Foster G L,Wade B S.Atmospheric carbon dioxide through the Eocene-Oligocene climate transition[J].Nature,2009,461(7267):1110-1113. [6] Pagani M,Huber M,Liu Z H,et al.The role of carbon dioxide during the onset of Antarctic glaciation[J].Science,2011,334(6060):1261-1264. [7] Kent D V,Muttoni G.Equatorial convergence of India and early Cenozoic climate trends[J].Proc Natl Acad Sci USA,2008,105(42):16065-16070. [8] Zeebe R E,Caldeira K.Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records[J].Nat Geosci,2008,1(5):312-315. [9] Sundquist E T.The global carbon dioxide budget[J].Science,1993,259(5097):934-941. [10] Tapponnier P,Xu Z Q,Roger F,et al.Oblique stepwise rise and growth of the Tibet Plateau[J].Science,2001,294(5547):1671-1677. [11] Edmond J M.Himalayan tectonics,weathering processes,and the strontium isotope record in marine limestone[J].Science,1992,258(5088):1594-1597. [12] Raymo M E,Ruddiman W F.Tectonic forcing of late Cenozoic climate[J].Nature,1992,359(6391):117-122. [13] France-Lanord C,Derry L A.Organic carbon burial forcing of the carbon cycle from Himalayan erosion[J].Nature,1997,390(6655):65-67. [14] Becker J A,Bickle M J,Galy A,et al.Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs[J].Earth Planet Sci Lett,2008,265(3/4):616-629. [15] Evans M J,Derry L A,France-Lanord C.Degassing of metamorphic carbon dioxide from the Nepal Himalaya[J].Geochem Geophys Geosyst,2008,9(4):Q04021.doi:10.1029/2007GC001796. [16] Skelton A.Flux rates for water and carbon during greenschist facies metamorphism[J].Geology,2011,39(1):43-46. [17] 刘焰. 深部碳循环:来自火成碳酸岩的启示[J].自然杂志,2012,34(4):201-207. [18] 刘焰. 藏南碳酸岩脉成因及其气候效应[J].地质科学,2013,48(2):384-405. [19] Yin A,Harrison T M.Geologic evolution of the Himalayan-Tibetan orogen[J].Annu Rev Earth Planet Sci,2000,28:211-280. [20] Wei Y,Zhang K X,Garzione C N,et al.Low palaeoelevation of the northern Lhasa terrane during Late Eocene:Fossil foraminifera and stable isotope evidence from the Gerze Basin[J].Sci Rep,2016,6:27508. [21] 张克信,王国灿,季军良,等.青藏高原古近纪-新近纪地层分区与序列及其对隆升的响应[J].中国科学:地球科学,2010,40(12):1632-1654. [22] Liu Y,Siebel W,Massonne H J,et al.Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area,southern Tibet[J].J Geol,2007,115(2):215-230. [23] Liu Y,Yang Z Q,Wang M.History of zircon growth in a high-pressure granulite within the eastern Himalayan syntaxis,and tectonic implications[J].Int Geol Rev,2007,49(9):861-872. [24] Zhang Z M,Xiang H,Dong X,et al.Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region,east-central Himalaya[J].Gond Res,2017,41:173-187. [25] Rapa G,Groppo C,Rolfo F,et al.Titanite-bearing calc-silicate rocks constrain timing,duration and magnitude of metamorphic CO2 degassing in the Himalayan belt[J].Lithos,2017,292/293:364-378. [26] Liu Y,Berner Z,Massonne H J,et al.Carbonatite-like dykes from the eastern Himalayan syntaxis:Geochemical,isotopic,and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust[J].J Asian Earth Sci,2006,26(1):105-120. [27] Rowley D B,Currie B S.Palaeo-altimetry of the Late Eocene to Miocene Lunpola basin,central Tibet[J].Nature,2006,439(7077):677-681. [28] DeCelles P G,Quade J,Kapp P,et al.High and dry in central Tibet during the Late Oligocene[J].Earth Planet Sci Lett,2007,253(3/4):389-401. [29] Sun B,Wang Y F,Li C S,et al.Early Miocene elevation in northern Tibet estimated by palaeobotanical evidence[J].Sci Rep,2015,5:10379. [30] Wu F X,Miao D S,Chang M M,et al.Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene[J].Sci Rep,2017,7(1):878. [31] Kapp P,DeCelles P G,Gehrels G E,et al.Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J].GSA Bull,2007,119(7/8):917-933. [32] Kapp P,Yin A,Harrison T M,et al.Cretaceous-Tertiary shortening,basin development,and volcanism in central Tibet[J].GSA Bull,2005,117(7/8):865-878. [33] 吴珍汉,叶培盛,殷才云.藏北改则新生代早期逆冲推覆构造系统[J].地球学报,2013,34(1):31-38. [34] 吴珍汉,赵珍,叶培盛,等.青藏高原中部色林错-伦坡拉逆冲推覆构造系统[J].地球学报,2016,37(4):441-448. [35] Najman Y,Bickle M,Chapman H.Early Himalayan exhumation:isotopic constraints from the Indian foreland basin[J].Terra Nova,2000,12(1):28-34. [36] Hodell D A,Kamenov G D,Hathorne E C,et al.Variations in the strontium isotope composition of seawater during the Paleocene and early Eocene from ODP Leg 208(Walvis Ridge)[J].Geochem Geophys Geosyst,2007,8(9):Q0900. [37] 刘志飞,王成善,伊海生,等.可可西里盆地新生代沉积演化历史重建[J].地质学报,2001,75(2):250-258. [38] 李亚林,王成善,伊海生,等.西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起[J].地质学报,2006,80(8):1118-1130,1234. [39] Wang C S,Zhao X X,Liu Z F,et al.Constraints on the early uplift history of the Tibetan Plateau[J].Proc Natl Acad Sci USA,2008,105(13):4987-4992. [40] Harrison T M,Copeland P,Kidd W S F,et al.Raising Tibet[J].Science,1992,255(5052):1663-1670. [41] Hodges K V.Tectonics of the Himalaya and southern Tibet from two perspectives[J].GSA Bull,2000,112(3):324-350. [42] Searle M P,Godin L.The south Tibetan detachment and the Manaslu leucogranite:A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya,Nepal[J].J Geol,2003,111(5):505-523. [43] Wu Z H,Ye P S,Patrick B J,et al.Late Oligocene-early Miocene thrusting in southern East Kunlun Mountains,northern Tibetan Plateau[J].J Earth Sci,2009,20(2):381-390. [44] Zhao W J,Kumar P,Mechie J,et al.Tibetan plate overriding the Asian plate in central and northern Tibet[J].Nat Geosci,2011,4(12):870-873. [45] 伍连东,苑婷媛,金海龙,等.西藏西北部浅变质石英砂岩岩石学特征及其构造意义[J].岩石学报,2018,34(3):701-718. [46] Guo Z T,Ruddiman W F,Hao Q Z,et al.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J].Nature,2002,416(6877):159-163. [47] Sun J M,Ye J,Wu W Y,et al.Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J].Geology,2010,38(6):515-518. [48] 强小科,安芷生,宋友桂,等.晚渐新世以来中国黄土高原风成红粘土序列的发现:亚洲内陆干旱化起源的新记录[J].中国科学:地球科学,2010,40(11):1479-1488. [49] Burchfiel B C,Chen Z,Hodges K V,et al.The South Tibetan Detachment System,Himalayan Orogen:Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt[M].Boulder,CO:Geological Society of America,1992,269:1-41. [50] Blisniuk P M,Hacker B R,Glodny J,et al.Normal faulting in central Tibet since at least 13.5 Myr ago[J].Nature,2001,412(6847):628-632. [51] Coleman M,Hodges K.Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J].Nature,1995,374(6517):49-52. [52] Liu Y,Zhong D.Petrology of high-pressure granulites from the eastern Himalayan syntaxis[J].J Metamorph Geol,1997,15(4):451-466. [53] Neogi S,Dasgupta S,Fukuoka M.High P-T polymetamorphism,dehydration melting,and generation of migmatites and granites in the Higher Himalayan Crystalline Complex,Sikkim,India[J].J Petrol,1998,39(1):61-99. [54] 吴珍汉,吴中海,胡道功,等.青藏高原古大湖与夷平面的关系及高原面形成演化过程[J].现代地质,2009,23(6):993-1002. [55] Spicer R A,Harris N B W,Widdowson M,et al.Constant elevation of Southern Tibet over the past 15 million years[J].Nature,2003,421(6923):622-624. [56] Rowley D B,Pierrehumbert R T,Currie B S.A new approach to stable isotope-based paleoaltimetry:Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J].Earth Planet Sci Lett,2001,188(1/2):253-268. [57] Garzione C N,Dettman D L,Quade J,et al.High times on the Tibetan Plateau:Paleoelevation of the Thakkhola graben,Nepal[J].Geology,2000,28(4):339-342. [58] 嵇少丞. 地震与中国大陆形影相随[M].北京:科学出版社,2009:1-200. [59] Gasse F,Arnold M,Fontes J C,et al.A 13000-year climate record from western Tibet[J].Nature,1991,353(6346):742-745. [60] 施雅风,刘晓东,李炳元,等.距今40~30 ka青藏高原特强夏季风事件及其与岁差周期关系[J].科学通报,1999,44(14):1475-1480. [61] 郑绵平,向军,魏新俊,等.青藏高原盐湖[M].北京:北京科学技术出版社,1989:1-431. [62] 贾玉连,施雅风,王苏民,等.40 ka以来青藏高原的4次湖涨期及其形成机制初探[J].中国科学: D辑,2001,31(增刊1):241-251. [63] 赵希涛,朱大岗,严富华,等.西藏纳木错末次间冰期以来的气候变迁与湖面变化[J].第四纪研究,2003,23(1):41-52. [64] 赵希涛,赵元艺,郑绵平,等.班戈错晚第四纪湖泊发育、湖面变化与藏北高原东南部末次大湖期湖泊演化[J].地球学报,2011,32(1):13-26. [65] 朱大岗,孟宪刚,赵希涛,等.西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁[J].中国地质,2004,31(3):269-277. [66] 吴中海,赵希涛,吴珍汉,等.西藏纳木错地区约120 ka BP以来的古植被、古气候与湖面变化[J].地质学报,2004,78(2):242-252. [67] 姚檀栋,Thompson L G,施雅风,等.古里雅冰芯中末次间冰期以来气候变化记录研究[J].中国科学: D辑,1997,27(5):447-452. [68] Martinson D G,Pisias N G,Hays J D,et al.Age dating and the orbital theory of the ice ages:Development of a high-resolution 0 to 300 000 years[J].Quat Res,1987,27(1):1-29. [69] Jouzel J,Lorius C,Petit J R,et al.Vostok ice core:A continuous isotope temperature record over the last climatic cycle (160 000 years)[J].Nature,1987,329(6138):403-408. [70] Dansgaard W,Johnsen S J,Clausen H B,et al.Evidence for gene-ral instability of past climate from a 250-kyr ice-core record[J].Nature,1993,364(6434):218-220. [71] Bond G,Broecker W,Johnsen S,et al.Correlations between climate records from North Atlantic sediments and Greenland ice[J].Nature,1993,365(6442):143-147. [72] Thompson L G,Yao T,Davis M E,et al.Tropical climate instability:The last glacial cycle from a Qinghai-Tibetan ice core[J].Science,1997,276(5320):1821-1825. [73] Pachur H J,Wünnemann B,Zhang H C.Lake evolution in the Tengger Desert,northwestern China,during the last 40 000 years[J].Quat Res,1995,44(2):171-180. [74] 张虎才,马玉贞,彭金兰,等.距今42~18 ka腾格里沙漠古湖泊及古环境[J].科学通报,2002,47(24):1847-1857. [75] 闫立娟,郑绵平,魏乐军.近40年来青藏高原湖泊变迁及其对气候变化的响应[J].地学前缘,2016,23(4):310-323. [76] Rea D K,Snoeckx H,Joseph L H.Late Cenozoic Eolian deposition in the North Pacific:Asian drying,Tibetan uplift,and cooling of the northern hemisphere[J].Paleoceanography,1998,13(3):215-224. [77] 刘东生,郑绵平,郭正堂.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J].第四纪研究,1998,18(3):194-204. [78] 郭正堂,彭淑贞,郝青振,等.晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系[J].第四纪研究,1999,19(6):556-567. [79] An Z S,Kutzbach J E,Prell W L,et al.Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J].Nature,2001,411(6833):62-66. [80] Biscaye P E,Grousset F E,Revel M,et al.Asian provenance of glacial dust (stage 2) in the greenland ice sheet project 2 ice core,summit,Greenland[J].J Geophy Res Oceans,1997,102(C12):26765-26781. [81] Vallelonga P,Svensson A.Ice core archives of mineral dust[M]//Knippertz P,Stuut J B W.Mineral Dust:A Key Player in the Earth System.Dordrecht: Springer,2014. [82] Fischer H,Wahlen M,Smith J,et al.Ice core records of atmospheric CO2 around the last three glacial terminations[J].Science,1999,283(5408):1712-1714. [83] Petit J R,Jouzel J,Raynaud D,et al.Climate and atmospheric history of the past 420 000 years from the Vostok ice core,Antarct-ica[J].Nature,1999,399(6735):429-436. [84] Siegenthaler U,Stocker T F,Monnin E,et al.Stable carbon cycle-climate relationship during the Late Pleistocene[J].Science,2005,310(5752):1313-1317. [85] Sundquist E T.Steady-and non-steady-state carbonate-silicate controls on atmospheric CO2[J].Quat Sci Rev,1991,10(2/3):283-296. [86] Berner R A,Caldeira K.The need for mass balance and feedback in the geochemical carbon cycle[J].Geology,1997,25(10):955-956. [87] Berner R A.The long-term carbon cycle,fossil fuels and atmospheric composition[J].Nature,2003,426(6964):323-326. [88] Kerrick D M,Caldeira K.Metamorphic CO2 degassing from orogenic belts[J].Chem Geol,1998,145(3/4):213-232. [89] Wang J D,Song C Q,Reager J T,et al.Recent global decline in endorheic basin water storages[J].Nat Geosci,2018,11(12):926-932. [90] Chen C,Park T,Wang X H,et al.China and India lead in greening of the world through land-use management[J].Nat Sustain,2019,2(2):122-129. |
[1] |
ZHANG Chaofeng, SHI Qianglin, ZHANG Lingjuan. Discussion on the relationship between Cenozoic magmatic activity and geotherm in Tibetan Plateau[J]. , 2018, 5(2): 18-24. |
[2] |
LIU Gang, LIU Jianyu, YAN Yunpeng. Discovery of new lakes controlled by strata and folds in Qinghai-Tibet Plateau[J]. , 2017, 4(5): 66-73. |
[3] |
LIU GANG, YAN Yunpeng, LIU Jianyu. Analysis of distribution character and background of geological hazards in western Qinghai-Tibet Plateau[J]. , 2017, 4(3): 37-45. |
[4] |
ZHANG Ruijiang. Glacier change and ecogeological environment response in Tibetan Plateau[J]. , 2016, 3(2): 46-50. |
[5] |
LI Li, LIU Yongquan, PANG Yingchun, CHEN Xiaoting, DENG Yanli. Design and implementation of measured stratigraphic profile data publishing system based on WebGIS[J]. , 2016, 3(2): 58-64. |
|
|
|
|