|
|
Influencing factors of constant-temperature layer depth and its estimation in Shaanxi Province |
ZHOU Yang1,2, ZHANG Hui1,2, JIANG Xingchen3, XU Zerun1,2, WANG Ke1,2, MU Genxu1,2 |
1. Shaanxi Institute of Geological Survey, Xi’an 710054, China; 2. Shaanxi Geological Survey Center of Hydrogeology, Engineering Geology and Environmental Geology, Xi’an 710068, China; 3. Zhongsheng Environmental Technology Development Co, Ltd, Xi’an 710000, China; |
|
|
Abstract The prediction of the constant-temperature layer depth is closely related to geothermal energy development and underground space construction. Progress of research on regional constant-temperature layer in Shaanxi Province is relatively slow. This paper discusses the influencing factors of the constant-temperature layer depth and the results show that there is an inverse correlation between the thermal conductivity and the constant-temperature layer depth. And the surface heat transfer coefficient between the surface and the atmosphere is positively correlated with the constant-temperature layer depth. Besides, the annual amplitude of the atmospheric temperature is positively correlated with the constant-temperature layer depth. The thermal conductivity coefficient and the constant-temperature layer depth showed a significant positive correlation. This paper describes and validates a method for calculating the constant-temperature layer depth. And the authors calculated the theoretical value of constant-temperature layer depth for different geomorphic units by using this method. The constant-temperature layer depth is between 10.5 m and 23.8 m for the whole province and is between 10.5 m and 23.8 m in northern Shaanxi Province, with 11~17.4 m in Guanzhong Basin and 11.7~18.6 m in southern Shaanxi Province. The depth range of the regional constant-temperature layer in Shaanxi Province has been systematically divided in this research and this paper has contributed to the implementation of Shaanxi’s “Green” Catch-up and Transcendent policies.
|
Received: 04 September 2018
|
|
|
|
|
[1] 周阳,邓念东,王凤,等.浅层地热能适宜性分区结构的分形原理[J].中国地质调查,2017,4(1):18-23. [2] 周阳,穆根胥,刘建强,等.典型地貌单元浅层地热能资源量赋存规律研究[J].地质科技情报,2018,37(4):238-244,268. [3] 周阳,穆根胥,张卉,等.关中盆地地温场划分及其地质影响因素[J].中国地质,2017,44(5):1017-1026. [4] 周阳,张卉,桂忠强,等.岩土体综合导热系数影响因素研究[J].中国地质调查,2018,5(1):87-91. [5] 王婉丽,王贵玲,朱喜.暖温带地区恒温层温度的预测方法[J].可再生能源,2016,34(8):1112-1116. [6] 刘晓燕,赵军,石成,等.土壤恒温层温度及深度研究[J].太阳能学报,2017,28(5):494-498. [7] 张杰,王兴春,赵敬洗,等.河北沽源、饶阳地区浅层地温场特征[J].物探与化探,2013,57(2):237-241. [8] Wu L L.A study on the thermal field of the soil in urban for-est[J].J Nanjing Forest Univ,2003,46(1):21-26. [9] Fan A W,Liu W,Wang C Q.Simulation on the daily change of soil temperature under various environment conditions[J].Acta Energ Solaris Sin,2003,24(2):167-171. [10] 刘文通,徐德伦,侯伟,等.渤海中部海域海底热扩散率及恒温层深度研究[J].青岛海洋大学学报,1994,24(4):485-490. [11] 刘文通,徐德伦,王正林,等.渤海中部海底恒温层温度及泥温相位随深度变化特征[J].海洋与湖沼,1995,26(5):460-465. [12] 杨智国. 西安地铁沿线地层地温夏季分布规律观测研究[J].西安科技大学学报,2012,32(5):610-616. [13] 任建喜,刘嘉辉,高虎艳,等.西安地铁沿线地层地温春季分布规律观测研究[J].铁道工程学报,2012,29(3):101-106. [14] 任建喜,高廷廷,冯晓光,等.西安地铁沿线地层秋季地温分布规律原位观测分析[J].现代隧道技术,2013,20(4):146-151. [15] 周阳,邓念东,张卉,等.榆神矿区首采煤层及上覆岩层工程地质特征[J].中国地质调查,2018,5(5):91-97. |
|
|
|