|
|
Preliminary study on soil quality assessment and producing area suitability in Yangtze River Economic Zone |
LIU Hongying, JIANG Yuehua, YANG Hui, XU Naizheng, YANG Guoqiang, JIN Yang |
Nanjing Geological Survey Center, China Geological Survey, Nanjing 210016, China |
|
|
Abstract It is of great significance to carry out soil quality assessment for the delimiting of the permanent basic farmland and overall optimization of agricultural production layout. Nemerow comprehensive pollution index, grading, cumulative frequency and integrated decision method were adopted in this paper, and Risk Control Standard for Soil Contamination of Agricultural Land (GB 15618-2018 ) and Green Food- Environmental Quality for Production Area (NY/T391-2013) were chosen as reference. The heavy metals, pH values, beneficial elements abundance-deficiency and producing area suitability for green agricultural products were evaluated in Yangtze River Economic Zone. The land quality of the study area is generally good, and the clean land area is 348 400 km2. The heavy metals content of the soil inherits the characteristics of natural background. The land area of and below the third stage is 69 400 km2, distributed in star-shaped plaques in Northeast and South Jiangxi, Changsha-Chenzhou area of Hunan, along the river and Guiyang, Kunming and other places. Their heavy metals enrichment was caused by natural factors or mining development, combustion of coal and oil and industrial three wastes emission. Acidic soil area is 335 600 km2, mainly distributed in Jiangxi, Hunan, Ningbo-Taizhou coastal region and Jinhua-Quzhou Basin. Alkaline soil area is 156 900 km2, mainly distributed in North Jiangsu Plain, around Dongting Lake area, Chengdu Plain and the area along the Yangtze River. Soil acidity and alkalinity is related to soil type. Abundance-deficiency of beneficial elements in soils is related to the soil parent material of Quaternary sediments, and the moderate-high area of beneficial elements is 344 400 km2, mainly distributed in Sichuan Aba, Chengdu Basin, around Dongting Lake, around Poyang Lake, Anhui Province along Yangtze River, North Jiangsu coastal region and Hangzhou-Jiaxin-Huzhou Plain. Deficiency area of beneficial elements is 138 900 km2, distributed in South Jiangxi, Jianghuai, Northeast Hubei and Yunnan Yuxi and other places. The most suitable area, suitable area and unsuitable area for green agricultural products are about 224 900 km2, 187 800 km2 and 182 800 km2 respectively. According to the producing area suitability for green agricultural products, cultivated land quality and site condition in the region, 7 pieces of permanent farmland protection proposal areas are established.
|
Received: 08 May 2019
|
|
|
|
|
[1] 中华人民共和国环境保护部,国家发展和改革委员会,水利部.长江经济带生态环境保护规划[EB/OL].(2017-07-17)[2017-07-13].http://www.mee.gov.cn/gkml/hbb/bwj/201707/W020170718547124128228.pdf. [2] 中华人民共和国国家发展和改革委员会.长江经济带发展规划纲要[EB/OL].(2016-10-11)[2016-03-25].http://www.ndrc.gov.cn/fzgggz/dqjj/qygh/201610/t20161011_822279.html. [3] Plant J,Smith D,Smith B,et al.Environmental geochemistry at the global scale[J].Appl Geochem,2001,16(11/12):1291-1308. [4] Daneshfar B,Cameron E.Leveling geochemical data between map sheets[J].J Geochem Explor,1998,63(3):189-201. [5] Cocker M D.Geochemical mapping in Georgia,USA:a tool for environmental studies,geologic mapping and mineral explora-tion[J].J Geochem Explor,1999,67(1/2/3):345-360. [6] Ferreira A,Inácio M M,Morgado P,et al.Low-density geochemi-cal mapping in Portugal[J].Appl Geochem,2001,16(11/12):1323-1331. [7] McClenaghan M B,Thorleifson L H,DiLabio R N W.Till geochemical and indicator mineral methods in mineral explora-tion[J].Ore Geol Rev,2000,16(3/4):145-166. [8] Williams T M,Dunkley P N,Cruz E,et al.Regional geochemical reconnaissance of the Cordillera Occidental of Ecuador:economic and environmental applications[J].Appl Geochem,2000,15(4):531-550. [9] Harris J R,Wilkinson L,Grunsky E,et al.Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt,Ontario[J].J Geochem Explor,1999,67(1/2/3):301-334. [10] Viladevall M,Font X,Navarro A.Geochemical mercury survey in the Azogue Valley (Betic area,SE Spain)[J].J Geochem Explor,1999,66(1/2):27-35. [11] Swennen R,van der Sluys J,Hindel R,et al.Geochemistry of overbank and high-order stream sediments in Belgium and Luxembourg:A way to assess environmental pollution[J].J Geochem Explor,1998,62(1/2/3):67-79. [12] Vice D H,Halleck P M.The effects of soil environment on the ability of surface geochemical surveys to detect underlying hydrocarbon traps[J].J Geochem Explor,1999,66(3):457-468. [13] Boni M,Costabile S,de Vivo B,et al.Potential environmental hazard in the mining district of southern Iglesiente (SW Sardinia,Italy)[J].J Geochem Explor,1999,67(1/2/3):417-430. [14] 伯尔维肯B.施俊法,译.走向21世纪的西欧区域地球化学填图[J].地质科技动态,1997(11):6-11. [15] 土壤环境容量研究组.土壤环境容量研究[J].环境科学,1986,7(5):34-44. [16] 夏增禄. 土壤环境容量研究[M].北京:气象出版社,1986:4-93. [17] 万国江. 环境质量的地球化学原理[M].北京:中国环境科学出版社,1988. [18] 全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998. [19] 施俊法. 走向21世纪的地球化学填图[J].地球科学,1999(3):320-324. [20] 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990:1-381. [21] 魏复盛,陈静生,吴燕玉,等.中国土壤环境背景值研究[J].环境科学,1992,12(4):12-19. [22] 吴燕玉,周启星,田均良.制定我国土壤环境标准(汞、镉、铅和砷)的探讨[J].应用生态学报,1991,2(4):344-349. [23] 夏增禄. 中国主要类型土壤若干重金属临界含量和环境容量区域分异的影响[J].土壤学报,1994,31(2):161-169. [24] 汪雅各,张家骐,潘中华,等.上海农业环境污染研究[M].上海:上海科学技术出版社,1991. [25] 朱礼学. 成都平原西部元素的分布特征及其与农业、环境的关系[J].物探化探计算机技术,1999,21(4):295-300. [26] 陈怀满,王宏康.农业环境中重金属的生物效应研究进展[C]//中国地理学会.环境中污染物及其生物效应研究文集.北京:科学出版社,1992:24-31. [27] 王宏康. 土壤中若干有毒元素的环境质量基准研究[J].农业环境保护,1993,12(4):162-165. [28] 中国地质科学院生物环境地球化学研究中心.环境地球化学应用研究论文集[G].北京:地质出版社,1995. [29] 陈怀满. 土壤-植物系统中的重金属污染:土壤圈物质循环系列专著[M].北京:科学出版社,1996. [30] 李炳元. 中国地貌图(1:400万)[CM].北京:科学出版社,1994. [31] 李炳元,潘保田,韩嘉福.中国陆地基本地貌类型及其划分指标探讨[J].第四纪研究,2008,28(4):535-543. [32] 陈志明. 中国及其毗邻地区地貌图说明书:中国地貌纲(1:400万)[M].北京:中国地图出版社,1993. [33] 王静爱,左伟.中国地理图集[CM].北京:中国地图出版社,2009. [34] 陈有明,杨娟,疏浅,等.长江流域地貌约束与国土开发保护遥感研究[J].长江流域资源与环境,2014,23(增刊1):30-40. [35] 陈有明,杨娟,疏浅,等.长江流域地貌、水患防治及土地潜力遥感研究[J].合肥工业大学学报:自然科学版,2014,37(6):736-744. [36] 陈有明,杨则东,黄洁,等.长江流域地貌类型与地貌过程遥感诠释[J].国土资源遥感,2010(增刊1):98-107. [37] 刘会平. 长江流域地貌类型研究[J].华中师范大学学报:自然科学版,1994,28(1):129-132. [38] 刘会平. 长江流域地貌区划新方案[J].华中师范大学学报:自然科学版,1996,30(3):347-352. [39] 金德生. 长江流域地貌系统演化趋势与流域开发[J].长江流域资源与环境,1993,2(1):1-8. [40] 中国科学院南京土壤研究所.全国1:400万土壤类型分布图[CM].北京:科学出版社,1998. [41] 龚子同,张甘霖,陈志诚,等.土壤发生与系统分类[M].北京:科学出版社,2007. [42] 龚子同. 中国土壤系统分类[M].北京:科学出版社,1999. [43] 席承藩. 土壤分类学[M].北京:中国农业出版社,1994. [44] 张甘霖,王秋兵,张凤荣,等.中国土壤系统分类土族和土系划分标准[J].土壤学报,2013,50(4):826-834. [45] 中国地质调查局.1:500万中国地质图[CM/OL].(2011-05-26)[2010-11-02].http://www.ngac.org.cn/Document/Map.aspx?MapId=EC7E1A7A7BC61954E0430100007F182E. [46] 任纪舜. 1:500万国际亚洲地质图[CM].北京:地质出版社,2012. [47] 全国矿产资源潜力评价成矿地质背景研究工作项目.中国1:250万大地构造图系列图件和说明书[R].北京:[s.n.],2013. [48] 夏金梧,李长安.长江流域地学研究现状与前沿课题[J].人民长江,2004,35(2):1-3. [49] 宋传中,钱德玲.长江形成的大地构造背景与沿江带的环境效应[J].合肥工业大学学报(自然科学版),2000,23(6):951-956. [50] 生态环境部,国家市场监督管理总局.GB 15618—2018土壤环境质量农用地土壤污染风险管控标准(试行)[S].北京:中国标准出版社,2018. [51] 生态环境部,国家市场监督管理总局.GB 36600—2018土壤环境质量建设用地土壤污染风险管控标准(试行)[S].北京:中国标准出版社,2018. [52] 孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2000:24-297. [53] Adriano D C.Trace Elements in the Terrestrial Environment[M].New York:Springer-Verlag,Inc,1986. [54] Page A L,Logan T G,Ryan J A.Land Application of Sludge[M].Chelsea:Lewis Publishers,1987. [55] Reed S C,Crites R W.Handbook of Land Treatment Systems for Industrial and Municipal Wastes[M].Norwich:Noyes Publication,1984. [56] Muller G.Index of geoaccumulation in sediments of the Rhine Rive[J].GeoJournal,1969,2(3):108-118. [57] 唐琨,朱伟文,周文新,等.土壤pH对植物生长发育影响的研究进展[J].作物研究,2013,27(2):207-212. [58] 赵军霞.土壤酸碱性与植物的生长[J].内蒙古农业科技,2003(6):33,42. [59] 许中坚,刘广深,喻佳栋,等.模拟酸雨对红壤结构体及其胶结物影响的实验研究[J].水土保持学报,2002,16(3):9-11. [60] 凌大炯,章家恩,欧阳颖.酸雨对土壤生态系统影响的研究进展[J].土壤,2007,39(4):514-521. [61] 易杰祥,吕亮雪,刘国道.土壤酸化和酸性土壤改良研究[J].华南热带农业大学学报,2006,12(1):23-28. [62] 师刚强,赵艺,施泽明,等.土壤pH值与土壤有效养分关系探讨[J].现代农业科学,2009,16(5):93-94. [63] 王云,魏复盛,杨国治,等.土壤环境元素化学[M].北京:中国环境科学出版社,1995:1-394. [64] 何念祖,孙其伟.植物生长的有益元素[M].上海:上海科学技术出版社,1993:1-240. [65] 王敬国. 植物营养的土壤化学[M].北京:北京农业大学出版社,1995:183-186. [66] 陈静生,邓宝山,陶澍,等.环境地球化学[M].北京:海洋出版社,1990:21-325. [67] 成杭新,李括,李敏,等.中国城市土壤化学元素的背景值与基准值[J].地学前缘,2014,21(3):265-306. [68] 李敏,成杭新,李括.中国淡水湖泊沉积物地球化学背景与环境质量基准建立的思考[J].地学前缘,2018,25(4):276-284. [69] 夏家淇. 土壤环境质量标准详解[M].北京:中国环境科学出版社,1996:1-86. [70] 王焰新. 环境地球化学研究进展评述——第四届国际环境地球化学学术讨论会简要回顾[J].地质科技情报,1997,16(4):75-77. [71] 吉林农大化学教研室.第二松花江灌区土壤及作物汞污染的调查研究[J].农业环境保护,1980(1):19-28. [72] 杨居荣,车宇瑚,王华东.北京地区土壤重金属容量的研究[J].环境科学学报,1984,4(2):142-150. [73] 杜庆明,沈伟然.天津市南排污河灌区土壤的重金属容量[J].环境科学,1987,8(6):57-62. [74] 张学询,王连平,宋胜焕.天津污灌区土壤、作物重金属污染状况的研究[J].中国环境科学,1988,8(2):20-27. [75] 中华人民共和国农业部.NY/T 391—2013绿色食品产地环境质量[S].北京:中国农业出版社,2013. [76] 中华人民共和国农业部.NY/T 5010—2016无公害农产品种植业产地环境条件[S].北京:中国农业出版社,2016. [77] 赵振华. 微量元素地球化学原理[M].2版.北京:科学出版社,1997:7-193. [78] 武汉地质学院地球化学教研室.地球化学[M].北京:地质出版社,1979:1-336. [79] Boult S,Collins D N,White K N,et al.Metal transport in a stream polluted by acid mine drainage-the Afon Goch,Anglesey,UK[J].Environ Pollut,1994,84(3):279-284. |
[1] |
JIANG Yuehua, ZHOU Quanping, CHEN Lide, NI Huayong, LEI Mingtang, CHENG Heqin, SHI Bin, MA Teng, GE Weiya, SU Jingwen, LI Yun, TAN Jianmin. Progresses and main achievements of geological environment comprehensive survey project in the Yangtze River Economic Zone[J]. , 2019, 6(5): 1-20. |
[2] |
LIU Hongying, JIANG Yuehua, YANG Guoqiang, JIN Yang, YANG Hui, ZHOU Quanping. Characteristics of rock salt mines and suitability evaluation of salt cave storages in Yangtze River Economic Zone[J]. , 2019, 6(5): 89-98. |
[3] |
BAO Shujing, LI Shizhen, XU Xingyou, ZHANG Liqin, DU Zhili, LIN Tuo, TANG Yue, ZHANG Baomin, WEI Dongtao, YANG Jianguo. Progresses and achievements of the National Oil and Gas Resource Strategic Constituency Survey Project[J]. , 2019, 6(2): 1-17. |
|
|
|
|