|
|
Review of mineralogy, inclusion and carbon stable isotopic studies of diamond |
YANG Xianzhong1, YUAN Xueyin2, WANG Jun2, CAI Yitao1, KANG Congxuan1 |
1. Nanjing Geological Survey Center, China Geological Survey, Nanjing 210016, China; 2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China |
|
|
Abstract Diamond is one of the hardest minerals on earth, and its formation environment is quite demanding. The mineralogical features, inclusion characteristics and carbon stable isotope composition of diamond record the information of temperature, pressure and material composition in the geological process of diamond growth, erosion and transportation. Therefore, the characteristics of mineralogy, inclusion and carbon stable isotope are the important research objects for exploring the diamond material source, formation processes and physicochemical environment in deep earth. The authors summarized the research findings about the characteristics of diamond mineralogy, inclusion and carbon stable isotope at home and abroad. The results show that the diamond source can be roughly distinguished by the diamond crystal types and combination as well as diamond colors. The diamond surface feature is an important distinguishable characteristic between primary diamond and placer diamond. The research on diamond inclusion types and combination, inclusion chronology and carbon stable isotope can be used to analyze the diamond material source and physicochemical environment in deep earth, and determine the diamond formation period. This research can provide important information for the study of diamond genesis, deep process of lithospheric mantle and crust-mantle interaction.
|
Received: 15 March 2019
|
|
|
|
|
[1] Bundy F P.TheP,T phase and reaction diagram for elemental carbon,1979[J].J Geophys Res:Solid Earth,1980,85:6930-6936. [2] Bundy F P,Bassett W A,Weathers M S,et al.The pressure-temperature phase and transformation diagram for carbon;updated through 1994[J].Carbon,1996,34(2):141-153. [3] 王适,孙宝元,王裕昌,等.聚晶金刚石石墨化温度的研究[J].超硬材料工程,2005,17(5):32-35. [4] 张书达,孙景.用高温显微镜直接观测金刚石的氧化过程[J].超硬材料工程,2006,18(6):23-25. [5] Bundy F P,Hall H T,Strong H M,et al.Man-made diamonds[J].Nature,1955,176(4471):51-55. [6] 路凤香,郑建平,陈美华.有关金刚石形成条件的讨论[J].地学前缘,1998,5(3):125-131. [7] 陈乾旺,娄正松,王强,等.人工合成金刚石研究进展[J].物理,2005,34(3):199-204. [8] 徐树桐,江来利,刘贻灿,等.大别山一些超高压矿物和岩石的发现以及超高压变质带的确定[J].中国地质,1997(8):46-47. [9] 杨经绥,许志琴,裴先治,等.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别[J].地质学报,2002,76(4):484-495. [10] El Goresy A,Dubrovinsky L S,Gillet P,et al.A new natural,super-hard,transparent polymorph of carbon from the Popigai impact crater,Russia[J].C R Geosci,2003,335(12):889-898. [11] Kirkley M B,Gurney J J,Levinson A A.Age,origin,and emplacement of diamonds:Scientific advances in the last decade[J].Gem Gemol,1991,27(1):2-25. [12] Tappert R,Tappert M C.Diamonds in nature:A guide to rough diamonds[M].Heidelberg:Springer,2011. [13] Shirey S B,Shigley J E.Recent advances in understanding the geology of diamonds[J].Gem Gemol,2013,49(4):188-222. [14] 路凤香. 深部地幔及深部流体[J].地学前缘,1996,3(3/4):181-186. [15] 肖化云,刘丛强,黄智龙.金刚石包裹体中的古地幔信息[J].地球科学进展,2001,16(2):244-250. [16] 路凤香. 地幔的窗口:金刚石[J].自然杂志,2011,33(3):161-165. [17] Moore M,Lang A R.On the origin of the rounded dodecahedral habit of natural diamond[J].J Cryst Growth,1974,26(1):133-139. [18] Yamaoka S,Komatsu H,Kanda H,et al.Growth of diamond with rhombic dodecahedral faces[J].J Cryst Growth,1977,37(3):349-352. [19] McCallum M E,Huntley P M,Falk R W,et al.Morphological,resorption and etch feature trends of diamonds from kimberlite populations within the Colorado-Wyoming state line district,USA[C]//Proceedings of the 5th International Kimberlite Conference.Brasília:Companhia de Pesquisa de Recursos Minerals,1994:32-50. [20] Schrauder M,Koeberl C,Navon O.Trace element analyses of fluid-bearing diamonds from Jwaneng,Botswana[J].Geochim Cosmochim Acta,1996,60(23):4711-4724. [21] Weiss Y,Griffin W L,Navon O.Diamond-forming fluids in fibrous diamonds:The trace-element perspective[J].Earth Planet Sci Lett,2013,376:110-125. [22] Miller C E,Kopylova M,Smith E.Mineral inclusions in fibrous diamonds:Constraints on cratonic mantle refertilization and diamond formation[J].Miner Petrol,2014,108(3):317-331. [23] Boyd S R,Mattey D P,Pillinger C T,et al.Multiple growth events during diamond genesis:An integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones[J].Earth Planet Sci Lett,1987,86(2/4):341-353. [24] Izraeli E S,Harris J W,Navon O.Fluid and mineral inclusions in cloudy diamonds from Koffiefontein,South Africa[J].Geochim Cosmochim Acta,2004,68(11):2561-2575. [25] 张蓓莉,陈华,丘志力,等.联合国金伯利进程框架下的钻石原产地研究[M].北京:地质出版社,2013:410. [26] 蒙宇飞,彭明生.褐色金刚石的缺陷与呈色机制研究[J].矿物岩石地球化学通报,2007,26(增刊1):112-113. [27] Wang W Y,Hall M,Breeding C M.Natural type Ia diamond with green-yellow color due to Ni-related defects[J].Gem Gemol,2007,43(3):240-243. [28] 殷小玲. 金刚石颜色成因探讨[J].超硬材料工程,2007,19(2):53-56. [29] 邹泽李. 金刚石的颜色成因[J].中国宝玉石,1998(3):16-17. [30] Meyer H O A,Milledge H J,Nave E.Natural irradiation damage in ivory coast diamonds[J].Nature,1956,206(4982):392. [31] Vance E R,Milledge H J.Natural and laboratory α-particle irradiation of diamond[J].Miner Mag,1972,38(299):878-881. [32] Vance E R,Harris J W,Milledge H J.Possible origins of α-damage in diamonds from kimberlite and alluvial sources[J].Miner Mag,1973,39(303):349-360. [33] Downes PJ,Bevan A W R.Diamonds in Western Australia[J].Rock Miner,2007,82(1):66-73. [34] Titkov S V,Shigley J E,Breeding C M,et al.Natural-color purple diamonds from Siberia[J].Gem Gemol,2008,44(1):56-64. [35] King J M,Shigley J E,Jannucci C.Exceptional pink to red diamonds:a celebration of the 30th argyle diamond tender[J].Gem Gemol,2014,50(4):268-279. [36] 马文运. 沅江流域宝石级金刚石砂矿特征[J].国土资源导刊,1989,8(1):51-53. [37] 杨明星,高岩.湖南金刚石的褐斑特征及其意义[J].宝石和宝石学杂志,2002,4(4):15-19. [38] Harrison E R,Tolansky S.Growth history of a natural octahedral diamond[J].Proc Roy Soc A:Math,Phys Eng Sci,1964,279(1379):490-496. [39] Sunagawa I.Morphology of natural and synthetic diamond crys-tals[C]//Sunagawa I.Materials Science of the Earth’s Interior.Tokyo:Terra Scientific,1984:303-330. [40] Omar M,Pandya N S,Tolansky S.The etching of diamond I.octahedron faces[J].Proc Roy Soc A:Math,Phys Eng Sci,1954,225(1160):33-40. [41] Evans T,Sauter D H.Etching of diamond surfaces with gases[J].Philos Mag,1961,6(63):429-440. [42] De Theije F K,Roy O,Van Der Laag N G,et al.Oxidative etching of diamond[J].Diam Relat Mater,2000,9(3/4/5/6):929-934. [43] Stachel T,Harris J W,Muehlenbachs K.Sources of carbon in inclusion bearing diamonds[J].Lithos,2009,112(S2):625-637. [44] Stachel T,Harris J W.The origin of cratonic diamonds--Constraints from mineral inclusions[J].Ore Geol Rev,2008,34(1/2):5-32. [45] Boyd F R,Gurney J J,Richardson S H.Evidence for a 150-200km thick Archaean lithosphere from diamond inclusion thermobarometry[J].Nature,1985,315(6018):387-389. [46] Jacob D E.Nature and origin of eclogite xenoliths from kimber-lites[J].Lithos,2004,77(1/4):295-316. [47] 黄蕴慧,秦淑英,周秀仲,等.华北地台金伯利岩与金刚石[M].北京:地质出版社,1992:89-112. [48] 丘志力,王琦,秦社彩,等.湖南砂矿金刚石包裹体原位测试:对金刚石成因来源的启示[J].大地构造与成矿学,2014,38(3):590-597. [49] Izraeli E S,Harris J W,Navon O.Raman barometry of diamond formation[J].Earth Planet Sci Lett,1999,173(3):351-360. [50] Richardson S H,Harris J W.Antiquity of peridotitic diamonds from the Siberian craton[J].Earth Planet Sci Lett,1997,151(3/4):271-277. [51] 郑建平. 中国东部地幔置换作用与中新生代岩石圈减薄[M].武汉:中国地质大学出版社,1999. [52] Field M,Stiefenhofer J,Robey J,et al.Kimberlite-hosted diamond deposits of southern Africa:A review[J].Ore Geol Rev,2008,34(1/2):33-75. [53] 陈美华,路凤香,狄敬如,等.辽宁瓦房店金刚石的阴极发光和红外光谱分析[J].科学通报,2000,45(13):1424-1428. [54] Javoy M,Pineau F,Delorme H.Carbon and nitrogen isotopes in the mantle[J].Chem Geol,1986,57(1):41-62. [55] Cartigny P,Harris J W,Phillips D,et al.Subduction-related diamonds:the evidence for a mantle-derived origin from coupled δ13C-δ15N determinations[J].Chem Geol,1998,147(1/2):147-159. [56] Cartigny P.Stable isotopes and the origin of diamond[J].Elements,2005,1(2):79-84. [57] Cartigny P,Palot M,Thomassot E,et al.Diamond formation:A stable isotope perspective[J].Annu Rev Earth Planet Sci,2014,42:699-732. [58] Schidlowski J M,Hayes J M,Kaplan I R.Isotopic inferences of ancient biochemistries:Carbon,sulfur,hydrogen,and nitro-gen[M]//Schopf J W.Earth’s Earliest Biosphere.Princeton:Princeton University Press,1983:149-186. [59] Shirey S B,Harris J W,Richardson S H,et al.Regional patterns in the paragenesis and age of inclusions in diamond,diamond composition,and the lithospheric seismic structure of Southern Africa[J].Lithos,2003,71(2/4):243-258. [60] Hauri E H,Wang J,Pearson D G,et al.Microanalysis of δ13C,δ15N,and N abundances in diamonds by secondary ion mass spectrometry[J].Chem Geol,2002,185(1/2):149-163. [61] Bulanova G P,Pearson D G,Hauri E H,et al.Carbon and nitrogen isotope systematics within a sector-growth diamond from the Mir Kimberlite,Yakutia[J].Chem Geol,2002,188(1/2):105-123. [62] Zedgenizov D A,Harte B.Microscale variations of δ13C and N content within a natural diamond with mixed-habit growth[J].Chem Geol,2004,205(1/2):169-175. [63] Craven J A,Harte B,Fisher D,et al.Diffusion in diamond.I.Carbon isotope mapping of natural diamond[J].Miner Mag,2009,73(2):193-200. [64] 张健,陈华,陆太进,等.山东金刚石碳同位素组成的二次离子质谱显微分析[J].岩矿测试,2012,31(4):591-596. [65] Palot M,Pearson D G,Stern R A,et al.Multiple growth events,processes and fluid sources involved in diamond genesis:A micro-analytical study of sulphide-bearing diamonds from Finsch mine,RSA[J].Geochim Cosmochim Acta,2013,106:51-70. [66] 陈华,丘志力,陆太进,等.扬子克拉通及华北克拉通大陆岩石圈地幔碳同位素组成及其差异:金刚石碳同位素原位测试证据[J].科学通报,2013,58(4):355-364. |
[1] |
YANG Xianzhong, CAI Yitao, KANG Congxuan, HUANG Guangzhao, LI Shuai, XIANG Hua. Discovery of diamond-bearing sedimentary tuff and its prospecting significance in Ligonggang area of Taoyuan County, Hunan Province[J]. , 2019, 6(6): 56-62. |
[2] |
WANG Denghong, ZHENG Mianping, WANG Chenghui, GAO Shuxue, SHANG Pengqiang, YANG Xianzhong, FAN Xingtao, SUN Yan. Progresses and main achievements on bulk lacking minerals and strategic emerging industry minerals survey project[J]. , 2019, 6(6): 1-11. |
[3] |
LIANG Enyun, ZOU Guangjun, PENG Yunyi, XIONG Miao. Geochemical characteristics of fluid inclusions in Lijia copper mine, Zhangjiajie, Northwest Hunan[J]. , 2018, 5(6): 24-32. |
[4] |
MU Yuliang, WANG Ganlu, FU Yong, YIN Yingzi. A study on fluid inclusions within ankerites of quartz-vein gold deposits in southeastern Guizhou[J]. , 2017, 4(5): 24-30. |
[5] |
GUOJia, NIU Bo. Review on the inorganic geochemical methods of paleo-fluid study[J]. , 2017, 4(1): 45-49. |
|
|
|
|