|
|
Geochemical characteristics and geological implication of adamellite in Yazigou area of Qimantag, Qinghai Province |
WANG Panxi1,2,3, WANG Zhenning1,2 |
1. Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China; 2. National Research Center of Multipurpose Utilization of Non-metallic Mineral Resources, Zhengzhou 450006, China; 3. Northwestern China Center for Geosience Innovation, Xi’an 710054, China |
|
|
Abstract The metal deposits, related to acid-intermediate magmatic intrusive activities, have been discovered in Qimantag area, and the area has become the most important and favorable prospecting Fe-Cu-Pb-Zn multimetallic metallogenic belt. Through the petrography and rock geochemistry study of adamellite in Yazigou area, the authors discussed its petrogenesis, tectonic setting and relation with mineralization. The results show that Yazigou adamellite has the typical features of high silicic, potassium and alkali contents and low aluminium, calcium, magnesium and iron contents, and the rocks belong to weakly peraluminous and high-kalium calc-alkaline rock series. The average value of ∑REE is 181.24×10-6 and the values of δEu are 0.07~0.11,with the average value of 0.09, indicating a remarkable Eu depletion. The rare earth patterns of rocks/chondrite show slightly right-dipping V-type curves, and light and heavy rare earth fractionation is not obvious. The rocks are significantly enriched in large ion lithophile elements of Rb, K, and active incompatible elements of U, Th , Pb, while high field strength elements of Nb, Ta, P,Ti, and large ion lithophile elements of Ba and Sr are relatively depleted. The adamellite of Yazigou region belongs to A2-type granite, which was formed in post-collision stage of collisional orogenic setting. This area has many porphyry-type copper molybdenum and skarn-type lead-zinc ore occurrences, so the prospecting work should be emphasized in adamellite of Late Triassic epoch.
|
Received: 04 January 2019
|
|
|
|
|
[1] 李侃,高永宝,钱兵,等.东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J].中国地质,2015,42(3):630-645. [2] 王松,丰成友,李世金,等.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].中国地质,2009,36(1):74-84. [3] 丰成友,王雪萍,舒晓峰,等.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林大学学报:地球科学版,2011,41(6):1806-1817. [4] 高永宝,李文渊,钱兵,等.东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J].岩石学报,2014,30(6):1647-1665. [5] 赵一鸣,丰成友,李大新,等.青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J].矿床地质,2013,32(1):1-19. [6] 高永宝,李文渊,马晓光,等.东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J].兰州大学学报:自然科学版,2012,48(2):36-47. [7] 姚磊,吕志成,赵财胜,等.青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA-ICP-MS锆石U-Pb年龄——对泥盆纪成岩成矿作用的指示[J].地质通报,2016,35(7):1158-1169. [8] 赵洪菊,陈静,王秉璋,等.祁漫塔格东段晚三叠世—早侏罗世花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报,2017,36(6):1001-1009. [9] 郭通珍,刘荣,陈发彬,等.青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICP MS锆石U-Pb定年及地质意义[J].地质通报,2011,30(8):1203-1211. [10] GB/T 14506.1—2010硅酸盐岩石化学分析方法第1部分:吸附水量测定[S]. [11] 尹明,李家熙.岩石矿物分析[M].4版.北京:地质出版社,2011. [12] Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth Sci Rev,1994,37(3/4):215-224. [13] Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].GSA Bull,1989,101(5):635-643. [14] Peccerillo A,Taylor S R.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J].Contrib Mineral Petrol,1976,58(1):63-81. [15] Middlemost E A K.Magmas and Magmatic Rocks[M].London:Longman,1985:1-266. [16] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and proce-sses[M]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.Geological Society,London,Special Publications,1989,42(1):313-345. [17] Eby G N.Chemical subdivision of the A-type granitoids:Petrogene-tic and tectonic implications[J].Geology,1992,20(7):641-644. [18] 洪大卫,王式洸,韩宝福,等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学:B辑,1995,25(4):418-426. [19] Collins W J,Beams S D,White A J R,et al.Nature and origin of A-type granites with particular reference to Southeastern Austra-lia[J].Contrib Mineral Petrol,1982,80(2):189-200. [20] Batchelor R A,Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chem Geol,1985,48:43-55. [21] Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].J Petrol,1984,25(4):956-983. [22] 李世金,孙丰月,丰成友,等.青海东昆仑鸭子沟多金属矿的成矿年代学研究[J].地质学报,2008,82(7):949-955. [23] 孔会磊,李金超,黄军,等.东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U-Pb测年、岩石地球化学及找矿意义[J].中国地质,2015,42(3):521-532. [24] 丰成友,王松,李国臣,等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报,2012,28(2):665-678. [25] Eklund O,Konopelko D,Rutanen H,et al.1.8 Ga Svecofennian post-collisional shoshonitic magmatism in the Fennoscandian shield[J].Lithos,1998,45:87-108. |
[1] |
ZHANG Jianfeng, WAN Taiping, LI Xinpeng, YANG Wenpeng, ZHAO Zhonghai, XU Donghai. Geochemical characteristics and evaluation of Nb and Ta deposits in Nianzishan area of Heilongjiang Province[J]. , 2020, 7(2): 30-38. |
[2] |
CHEN Haidong, GAO Yong, HE Guoqiang, QIU Jinxiong, LU Ning. LA-ICP-MS zircon U-Pb ages and geochemical characteristics of Sangejing gabbro in Beishan area of Inner Mongolia[J]. , 2020, 7(1): 53-59. |
[3] |
MA Yameng, TAN Xiumin, ZHAO Hengqin, ZHANG Yongxing, YI Yuejun. Analysis on optimizing layout of mineral resources development in Qimantag metal ore concentration area of Qinghai Province[J]. , 2020, 7(1): 85-90. |
[4] |
HE Jun, XIAO Pan, PENG Ke, XU Ke. Hydrogeochemical characteristics of the shallow pore water in Western Jianghan Plain[J]. , 2019, 6(5): 36-42. |
[5] |
XU Gang, WANG Yue, LIU Zichang, LV Hang, GAO Shufang. Geochemical characteristics and geological significance of argillaceous rocks of Early Cretaceous Jianmenguan Formation in Northern Sichuan Basin[J]. , 2019, 6(2): 76-86. |
[6] |
XU Yunfeng, QIN Yulong, WANG Xianfeng, LI Mingze, ZHOU Xiong, ZHAN Hanyu, WU Wenhui. Geochemical characteristics and metallogenic geological conditions of pegmatite type lithium polymetallic ore in Rongxuka, Sichuan Province[J]. , 2019, 6(1): 34-40. |
|
|
|
|