|
|
Magmatic activity and its geological significance in Early Jurassic in Mangui area of Inner Mongolia |
LI Zhonghui1, LI Yang2, LI Ruijie1, LI Kai1 |
1. Heilongjiang Institute of Geological Survey, Harbin 150036, China; 2. Qiqihaer Institute of Geological Exploration in Heilongjiang, Qiqihaer 161006, China |
|
|
Abstract By investigating the U-Pb zircon isotope geochronology and petrogochemistry of the major magmatic rocks in Mangui area, the authors in this paper discussed the forming era, tectonic background and geological significance. A large amount of intrusive rocks and a small amount of medium-acid volcanic rocks in Early Jurassic were found in this area. U-Pb dating by LA-ICP-MS method shows that the ages are from (199±1)Ma to (184±1)Ma and the rock types can be divided into fine-medium-grained quartz diorite, medium-grained granodiorite, fine-medium-grained monzogranite, medium-fine-grained macrophenocryst monzogranite, rhyolite, dacite and andesite, which didn’t ouur in Neoprotezoic-Paleozoic period as previous researchers thought, revealing the tectonic and magmatic activities during the Early Mesozoic period. The geochemical results show that the rocks are Ⅰ-type magmatic rocks of subluminous-peraluminous high-K calc-alkaline series. The fractionation between light and heavy rare-erath elements((La/Yb)N= 3.42~32.96) and the Eu depletion degree is not complied with the evaluation from basic to acidic. The large ion lithophile element Ba is relatively rich and Rb, Sr are relatively delicient. The high field strength elements Th and U are relatively rich and Nb, Ti, Y are relatively deficient. The magma origin and tectonic setting show that quartz diorite and medium-fine-grained macrophenocryst monzogranite come from crust-mantle mixed magma, while the medium-acid volcanic rocks, granodiorite and fine-medium-grained monzogranite are from the partial melting of crustal materials, whose formation is connected with the evolution of Mongol-Okhotsk Suture Zone. The geology and geochemistry of the Early Mesozoic magmatic rocks indicate that the middle part of Mongol-Okhotsk Ocean might begin subduction at the end of the middle Triassic and close the Early Jurassic. The peak collision might take place at the Early Jurassic, not in the Late Triassic as previous thought. The Mohe over-thrust nappe system might form in the remote effect of southward extrusion during the closing process of the eastem part of Mongol-Okhotsk Ocean. The middle and eastern Mongol-Okhotsk Ocean closing age is of great importance to reveal the basin-range tectonic formation during the Middle Jurassic to the Late Cretaceous in Northeast China.
|
Received: 04 September 2019
|
|
|
|
|
[1] Kravchinsky V A,Cogné J P,Harbert W P,et al.Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone,Siberia[J].Geophys J Int,2002,148(1):34-57. [2] Zonenshain L P,Kuzmin M I,Natapov L M,et al.Geology of the USSR:A Plate-Tectonic Synthesis[M].American Geophysical Union,1990:242. [3] Zorin Y A,Belichenko V G,Turutanov E K,et al.The East Siberia transect[J].Int Geol Rev,1995,37(2):154-175. [4] 佘宏全,梁玉伟,李进文,等.内蒙古莫尔道嘎地区早中生代岩浆作用及其地球动力学意义[J].吉林大学学报:地球科学版,2011,41(6):1831-1864. [5] Chen Z G,Zhang L C,Wan B,et al.Geochronology and geochemi-stry of the Wunugetushan porphyry Cu-Mo deposit in NE China,and their geological significance[J].Ore Geol Rev,2011,43(1):92-105. [6] Sun D Y,Gou J,Wang T H,et al.Geochronological and geochemical constraints on the Erguna massif basement,NE China-subduction history of the Mongol-Okhotsk oceanic crust[J].Int Geol Rev,2013,55(14):1801-1816. [7] Tang J,Xu W L,Wang F,et al.Geochronology and geochemistry of Early-Middle Triassic magmatism in the Erguna Massif, NE China:constraints on the tectonic evolution of the Mongol-Okhotsk Ocean[J].Lithos,2014,184/187:1-16. [8] Wang W,Tang J,Xu W L,et al.Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif,Northeast China:petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt[J].Lithos,2015,218/219:73-86. [9] 李锦轶,莫申国,和政军,等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘,2004,11(3):157-168. [10] Wu F Y,Sun D Y,Ge W C,et al.Geochronology of the Phanerozoic granitoids in northeastern China[J].J Asian Earth Sci,2011,41(1):1-30. [11] 邵济安,张履桥,牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘,1999,6(4):339-346. [12] 赵书跃,韩彦东,朱春燕,等.大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义[J].地质力学学报,2004,10(3):276-287. [13] 邓晋福,赵国春,苏尚国,等.燕山造山带燕山期构造叠加及其大地构造背景[J].大地构造与成矿学,2005,29(2):157-165. [14] Chen Y J,Chen H Y,Zaw K,et al.Geodynamic settings and tectonic model of skarn gold deposits in China:an overview[J].Ore Geol Rev,2007,31(1/4):139-169. [15] 王召林,金浚,李占龙,等.大兴安岭中北段莫尔道嘎地区含矿斑岩的锆石U-Pb年龄、Hf同位素特征及成矿意义[J].岩石矿物学杂志,2010,29(6):796-810. [16] 王涛,张磊,郭磊,等.亚洲中生代花岗岩图初步编制及若干研究进展[J].地球学报,2014,35(6):655-672. [17] 王璞珺,赵然磊,蒙启安,等.白垩纪松辽盆地:从火山裂谷到陆内拗陷的动力学环境[J].地学前缘,2015,22(3):99-117. [18] 黑龙江省地质调查研究总院.黑龙江1:25万漠河、漠河县幅区域地质调查报告[R].哈尔滨:黑龙江省地质调查研究总院,2014. [19] 邓晋福,刘翠,冯艳芳,等.关于火成岩常用图解的正确使用:讨论与建议[J].地质论评,2015,61(4):717-734. [20] 耿建珍,李怀坤,张健,等.锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报,2011,30(10):1508-1513. [21] 李中会,李睿杰,李阳,等.大兴安岭满归地区变中酸性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].中国地质调查,2020,7(1):47-52. [22] Rapp R P,Watson E B.Dehydration melting of Metabasalt at 8-32 kbar:implications for continental growth and crust-mantle recycling[J].J Petrol,1995,36(4):891-931. [23] Petro W L.挤压性和拉张性板块边缘深成岩套主要元素地球化学[J].国外地质科技,1981,7:47-57. [24] Whalen J B,Currie K L,Chappell B W.A-type granites:geochemical characteristics,discrimination and petrogenesis[J].Contrib Mineral Petrol,1987,95(4):407-419. [25] 李昌年. 火成岩微量元素地球化学[M].武汉:中国地质大学出版社,1992:97-109. [26] 戴慧敏,杨忠芳,马振东,等.大兴安岭查巴奇地区中生代侵入岩岩石地球化学特征及构造背景[J].中国地质,2013,40(1):232-247. [27] 赵志雄,熊煜,贾元琴,等.北山独龙包地区晚石炭世陆缘弧岩浆作用——花岗闪长岩锆石U-Pb年龄及地球化学证据[J].地质论评,2018,64(3):597-609. [28] 程银行,杨俊泉,刘永顺,等.大兴安岭敖包查干地区安山岩年代学、地球化学研究[J].地质调查与研究,2012,35(2):118-127. [29] Sengör A M C,Natal'in B A.Paleotectonics of Asia:fragments of a synthesis[M]//Yin A,Harrison M.The Tectonic Evolution of Asia.London:Cambridge University Press,1996:486-640. [30] 纪政,葛文春,杨浩,等.大兴安岭中段晚三叠世安第斯型安山岩:蒙古—鄂霍茨克大洋板片南向俯冲作用的产物[J].岩石学报,2018,34(10):2917-2930. |
[1] |
WANG Weiping, WU Chengping, MA Xunbiao. Aeromagnetic field feature and iron ore target prospecting in deep coverage area of Qihe in Shandong Province[J]. , 2020, 7(1): 23-29. |
[2] |
LI Zhonghui, LI Ruijie, LI Yang, SHA Huanyu. LA-ICP-MS zircon U-Pb ages and geological significance of the meta-intermediate-acidic volcanic rocks in Mangui area of Da Hinggan Mountains[J]. , 2020, 7(1): 47-52. |
[3] |
WANG Weiping, WU Chengping, MA Xunbiao. Aeromagnetic field feature and lithologic mapping in eastern Guizhou[J]. , 2018, 5(1): 37-43. |
[4] |
LIU Yanxu, LI Wenyong, CAO Anqi. Recognition of Tuquan Basin structure based airborne gravity magnetic characteristics[J]. , 2018, 5(1): 44-50. |
[5] |
ZHANG Zhaoqi, WANG Quan, WEI Yansheng, LIU Chengru, YANG Wubao, DUAN Chunsen, YANG Yaohua. Main achievements in supplemental regional geological survey of 1∶250 000 Datong Sheet[J]. , 2017, 4(4): 50-59. |
|
|
|
|