|
|
Overview of the research progress of groundwater resources assessment technology based on remote sensing |
LU Zhao1,2, DENG Zhengdong1, WANG Daqing1, ZHAO Hongfei2,3, WANG Guangyuan1, XU Haoli1 |
1. Army Engineering University, Nanjing 210001, China; 2. Maintenance Technology Room of 31605 Factory, Nanjing 210011, China; 3. Postdoctoral Workstation of Jinling Hospital, Nanjing 210000, China |
|
|
Abstract The storage and depth of groundwater are important contents in groundwater resources survey. Remote sensing technology has advantages of fast data acquisition, low comprehensive cost and large observation scale. The groundwater resources assessment technology based on remote sensing has always attracted the attention of researchers, and it is also a hot and difficult issue in the field of remote sensing application research. This paper presents an overview of the application research progress of remote sensing technology in the assessment of groundwater storage and depth, and have divided the groundwater resources assessment technology into three types-single-factor model evaluation method, multi-factor comprehensive model evaluation method and evaluation method based on GRACE data auovding to their characteristics. Three conclusions are drawn. Firstly, the groundwater resources assessment technology based on remote sensing has been continuously enriched and the assessment accuracy has also been continuously improved after years of development, which can be used as an important auxiliary method for traditional groundwater resources survey. Secondly, the research on remote sensing evaluation technology for groundwater storage has developed rapidly, while these for groundwater depth have progressed relatively slowly. Thirdly, the combined use of high-temporal-spatial resolution remote sensing technology and machine learning technology, and the application of UAV remote sensing technology are future development directions of the groundwater resources assessment technology based on remote sensing.
|
Received: 16 June 2020
|
|
|
|
|
[1] Llamas M R,Martínez-Santos P.Intensive groundwater use:Silent revolution and potential source of social conflicts[J].J Water Resour Plan Manage,2005,131(5):337-341. [2] 陈礼宾. 七十年代美、加等国的热红外遥感技术在水文地质调查中的应用实例[J].国外地质勘探技术,1981(7):8-11. Chen L B.Application examples of thermal infrared remote sen-sing technology in hydrogeology survey in the United States,Canada and other countries in the1970s[J].Foreign Geoexploration Technology,1981(7):8-11. [3] 阿布都瓦斯提·吾拉木,秦其明.地下水遥感监测研究进展[J].农业工程学报,2004,20(1):184-188. Abduwasit G,Qin Q M.Overview on methods and theories of remote sensing monitoring and exploration of groundwater[J].Transactions of the Chinese Society of Agricultural Engineering,2004,20(1):184-188. [4] Díaz-Alcaide S,Martínez-Santos P.Review:Advances in groundwater potential mapping[J].Hydrogeol J,2019,27(7):2307-2324. [5] Shahid S,Nath S K,Roy J.Groundwater potential modelling in a soft rock area using a GIS[J].Int J Remote Sens,2000,21(9):1919-1924. [6] 李婉秋,王伟,章传银,等.利用GRACE卫星重力数据监测关中地区地下水储量变化[J].地球物理学报,2018,61(6):2237-2245. Li W Q,Wang W,Zhang C Y,et al.Monitoring groundwater storage variations in the Guanzhong area using GRACE satellite gravity date[J].Chinese Journal of Geophysics,2018,61(6):2237-2245. [7] Sun A Y.Predicting groundwater level changes using GRACE data[J].Water Resour Res,2013,49(9):5900-5912. [8] 傅碧宏,史基安,张中宁.Landsat TM热红外遥感数据定量反演地下水富集带的温度信息——以甘肃河西地区石羊河流域为例[J].遥感技术与应用,1999,14(2):34-38. Fu B H,Shi J A,Zhang Z N.Quantitative estimation of Land Surface Temperature (LST) of groundwater-enriched zone using Landsat TM6 thermal infrared remote sensing data in the arid region:A case study in the Shiyang River drainage basin of Hexi Corridor,Gansu Province[J].Remote Sensing Technology and Application,1999,14(2):34-38. [9] 王飞跃,吴军虎,王俊峰,等.热红外遥感技术在演马矿水害防治决策中的初步应用[J].国土资源遥感,1999,11(2):19-24. Wang F Y,Wu J H,Wang J F,et al.A primary application of infrared remote sensing technique to prevent and control mining water at Jiaozuo of Henan Province[J].Remote Sensing for Land and Resources,1999,11(2):19-24. [10] 盖利亚,李巨芬,王宇.Landsat ETM数据在黄土丘陵区对浅层地下水信息的提取[J].测绘科学,2010,35(5):217-219. Gai L Y,Li J F,Wang Y.Study of groundwater information extraction from loess hill drought area based on Landsat ETM date[J].Science of Surveying and Mapping,2010,35(5):217-219. [11] 吴文渊,金城,庞毓雯,等.热红外遥感浙江地表热环境分布研究[J].遥感学报,2019,23(4):796-807. Wu W Y,Jin C,Pang Y W,et al.Distribution characteristics of surface thermal environment in Zhejiang Province based on thermal infrared remote sensing[J].Journal of Remote Sensing,2019,23(4):796-807. [12] Duan S B,Li Z L,Wang C G,et al.Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product[J].Int J Remote Sens,2019,40(5/6):1763-1778. [13] 钟华平,刘恒,王义,等.黑河流域下游额济纳绿洲与水资源的关系[J].水科学进展,2002,13(2):223-228. Zhong H P,Liu H,Wang Y,et al.Relationship between Ejina oasis and water resources in the lower Heihe River basin[J].Advances in Water Science,2002,13(2):223-228. [14] 王飞跃,孙顺新.环境遥感信息分析法在干旱区找水中的应用——以内蒙锡林浩特地区为例[J].国土资源遥感,1999,11(1):36-42. Wang F Y,Sun S X.The application of environmental remote sensing information analysis in seeking for water resource in arid areas-taking Xilinhaote area,Inner Monglia Autonomous Region as examples[J].Remote Sensing for Land and Resources,1999,11(1):36-42. [15] Sultan D,Song Y D,Marina J.Influence of groundwater level change on vegetation coverage and their spatial variation in arid regions[J].J Geogr Sci,2004,14(3):323-329. [16] 金晓媚,万力,薛忠歧,等.基于遥感方法的银川盆地植被发育与地下水关系研究[J].干旱区资源与环境,2008,22(1):129-132. Jin X M,Wan L,Xue Z Q,et al.Research on the relationship between vegetation development and groundwater in Yinchuan Basin based on the remote sensing[J].Journal of Arid Land Resources and Environment,2008,22(1):129-132. [17] 姜红,玉素甫江·如素力,阿迪来·乌甫,等.基于Landsat数据的开都河两岸绿洲地下水遥感监测及影响因素分析[J].自然灾害学报,2017,26(4):205-214. Jiang H,Yusufujiang R,Adilai W,et al.Landsat date based monitoring of groundwater depth and its influencing factors in oasis area of Kaidu river both sides[J].Journal of Natural Disasters,2017,26(4):205-214. [18] 曹乐,聂振龙,刘敏,等.民勤绿洲天然植被生长与地下水埋深变化关系[J].水文地质工程地质,2020,47(3):25-33. Cao L,Nie Z L,Liu M,et al.Changes in natural vegetation growth and groundwater depth and their relationship in the Minqin oasis in the Shiyang River basin[J].Hydrogeology and Engineering Geo-logy,2020,47(3):25-33. [19] Komarov S A,Mironov V L,Romanov A N,et al.Remote sensing of the water table:Measurement and a data processing algorithm[J].Mapp Sci Remote Sens,1999,36(1):1-10. [20] 郭娇,石建省,叶浩,等.黄河三角洲地下水位分布的遥感模型研究[J].水文地质工程地质,2009,36(2):19-24. Guo J,Shi J S,Ye H,et al.Remote sensing modelling of groundwater level distribution in the Yellow River Delta[J].Hydrogeology and Engineering Geology,2009,36(2):19-24. [21] 霍艾迪,张广军,赵君,等.基于MODIS数据的沙漠化地区地下水位遥感监测模型的建立——以毛乌素沙地为例[J].干旱地区农业研究,2016,28(6):196-200. Huo A D,Zhang G J,Zhao J,et al.Study on remote sensing monitoring model of groundwater level in aeolian desertification areas—A case study of Mu Us Aeolian desertification areas,China[J].Agricultural Research in the Arid Areas,2016,28(6):196-200. [22] 郑璞,邓正栋,王大庆,等.基于TM数据的土壤湿度指数预测半干旱地区浅层地下水的研究——以朝阳地区为例[J].水文,2015,35(5):23-29. Zheng P,Deng Z D,Wang D Q,et al.Study on predicting shallow groundwater in semi-arid area based on soil humidity index of TM date:Taking Chaoyang City as a study case[J].Journal of China Hydrology,2015,35(5):23-29. [23] 姜红,玉素甫江·如素力,热伊莱·卡得尔,等.一种利用土壤水分反演地下水位遥感方法[J].遥感信息,2018,33(5):82-88. Jiang H,Yusufujiang R,Rerilai K,et al.A remote sensing method for retrieving groundwater levels using soil moisture[J].Remote Sensing Information,2018,33(5):82-88. [24] 吴迪. 土壤湿度指数预测沈阳市浅层地下水[J].水利规划与设计,2018(12):50-53. Wu D.Prediction of shallow groundwater in Shenyang by soil moisture index[J].Water Resources Planning and Design,2018(12):50-53. [25] 史晓亮,周政辉,王馨爽.基于遥感技术的干旱区地下水监测研究[J].人民黄河,2019,41(7):87-91. Shi X L,Zhou Z H,Wang X S.Study on groundwater monitoring based on remote sensing in arid region[J].Yellow River,2019,41(7):87-91. [26] Omar A A.Use of SIR-A interpretation for underground water prospecting in southern Iraq[M]//Institution of Mining & Metallurgy.Remote Sensing:An Operational Technology for the Mining and Petroleum Industries.Dordrecht:Springer,1990:165-172. [27] Krishnamurthy J,Srinivas G.Role of geological and geomorpholo-gical factors in ground water exploration:A study using IRS LISS data[J].Int J Remote Sens,1995,16(14):2595-2618. [28] Tam V T,Batelaan O.A multi-analysis remote-sensing approach for mapping groundwater resources in the Karstic Meo Vac Valley,Vietnam[J].Hydrogeol J,2011,19(2):275-287. [29] Murugesan V,Krishnaraj S,Kannusamy V,et al.Groundwater potential zoning in Thirumanimuttar sub-basin Tamilnadu,India-a GIS and remote sensing approach[J].Geo-spat Inf Sci,2011,14(1):17-26. [30] 程洋,童立强,郭兆成,等.资源一号02C卫星数据在北京岩溶水资源勘查评价工程中的应用[J].国土资源遥感,2015,27(2):183-189. Cheng Y,Tong L Q,Guo Z C,et al.Application of satellite date of ZY1-02C to the exploration engineering of Karst water resources in Beijing[J].Remote Sensing for Land and Resources,2015,27(2):183-189. [31] 王康,姜琦刚,于德浩,等.基于遥感的辽西朝阳地区水文地质信息提取及其应用[J].世界地质,2018,37(3):958-966. Wang K,Jiang Q G,Yu D H,et al.Extraction and application of hydrogeological information based on remote sensing of Chaoyang Region,western Liaoning[J].Global Geology,2018,37(3):958-966. [32] Finizio A,Villa S.Environmental risk assessment for pesticides:A tool for decision making[J].Environ Impact Assess Rev,2002,22(3):235-248. [33] 邓正栋,叶欣,龙凡,等.地下水遥感模糊评估指数的构建与研究[J].地球物理学报,2013,56(11):3908-3916. Deng Z D,Ye X,Long F,et al.Construction and investigation of groundwater remote sensing fuzzy assessment index[J].Chinese Journal of Geophysics,2013,56(11):3908-3916. [34] Kaliraj S,Chandrasekar N,Magesh N S.Identification of potential groundwater recharge zones in Vaigai upper basin,Tamil Nadu,using GIS-based analytical hierarchical process (AHP) technique[J].Arabian J Geosci,2014,7(4):1385-1401. [35] Pinto D,Shrestha S,Babel M S,et al.Delineation of groundwater potential zones in the Comoro watershed,Timor Leste using GIS,remote sensing and analytic hierarchy process (AHP) techni-que[J].Appl Water Sci,2017,7(1):503-519. [36] Das B,Pal S C,Malik S,et al.Modeling groundwater potential zones of Puruliya district,West Bengal,India using remote sensing and GIS techniques[J].Geol Ecol Landsc,2019,3(3):223-237. [37] Al-Abadi A M.Modeling of groundwater productivity in northeastern Wasit Governorate,Iraq using frequency ratio and Shannon’s entropy models[J].Appl Water Sci,2017,7(2):699-716. [38] Kim J C,Jung H S,Lee S.Groundwater productivity potential mapping using frequency ratio and evidential belief function and artificial neural network models:Focus on topographic factors[J].J Hydroinf,2018,20(6):1436-1451. [39] Jothibasu A,Anbazhagan S.Spatial mapping of groundwater potential in Ponnaiyar River basin using probabilistic-based frequency ratio model[J].Model Earth Syst Environ,2017,3(1):33. [40] Manap M A,Nampak H,Pradhan B,et al.Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS[J].Arabian J Geosci,2014,7(2):711-724. [41] Elmahdy S I,Mohamed M M.Probabilistic frequency ratio model for groundwater potential mapping in Al Jaww plain,UAE[J].Arabian J Geosci,2015,8(4):2405-2416. [42] Naghibi S A,Moghaddam D D,Kalantar B,et al.A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping[J].J Hydrol,2017,548:471-483. [43] Ozdemir A.GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya,Turkey) using frequency ratio,weights of evidence and logistic regression methods and their comparison[J].J Hydrol,2011,411(3/4):290-308. [44] Das S.Comparison among influencing factor,frequency ratio,and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin,Maharashtra,India[J].Groundw Sustain Dev,2019,8:617-629. [45] Naghibi S A,Pourghasemi H R,Pourtaghi Z S,et al.Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed,Iran[J].Earth Sci Inf,2015,8(1):171-186. [46] Razandi Y,Pourghasemi H R,Neisani N S,et al.Application of analytical hierarchy process,frequency ratio,and certainty factor models for groundwater potential mapping using GIS[J].Earth Sci Inf,2015,8(4):867-883. [47] Sahoo S,Munusamy S B,Dhar A,et al.Appraising the accuracy of multi-class frequency ratio and weights of evidence method for delineation of regional groundwater potential zones in canal command system[J].Water Resour Manage,2017,31(14):4399-4413. [48] 齐信,黄波林,刘广宁,等.基于GIS技术和频率比模型的三峡地区秭归向斜盆地滑坡敏感性评价[J].地质力学学报,2017,23(1):97-104. Qi X,Huang B L,Liu G N,et al.Landside susceptibility assessment in the Three Gorges area,China,Zigui synclinal basin,using GIS technology and frequency ratio model[J].Journal of Geomechanics,2017,23(1):97-104. [49] 张海军,戚鹏程.基于频率比和逻辑回归模型的东北地区火险制图研究[J].地理与地理信息科学,2012,28(5):35-38,42. Zhang H J,Qi P C.Mapping fire occurrence susceptibility in Northeast China:Comparison of frequency ratio and binary logistic regression[J].Geography and Geo-Information Science,2012,28(5):35-38,42. [50] 相爱芹,丁继新,孟庆丰,等.基于GIS技术的密云县地质灾害易发性评价[J].矿产勘查,2015,6(3):324-328. Xiang A Q,Ding J X,Meng Q F,et al.Assessment of geo-hazard susceptibility based on GIS technique in Miyun County,Beijing[J].Mineral Exploration,2015,6(3):324-328. [51] 李强. 创建决策树算法的比较研究——ID3,C4.5,C5.0算法的比较[J].甘肃科学学报,2006,18(4):84-87. Li Q.A comparative study on algorithms of constructing decision trees:ID3,C4.5 and C5.0[J].Journal of Gansu Sciences,2006,18(4):84-87. [52] 王春燕,王刘明,张媛,等.基于SEaTH的决策树方法在区域尺度土地覆被分类中的应用[J].兰州大学学报:自然科学版,2019,55(1):11-18. Wang C Y,Wang L M,Zhang Y,et al.Application of SEaTH algorithms-based decision trees in regional land cover classification[J].Journal of Lanzhou University:Natural Sciences,2019,55(1):11-18. [53] 崔璐,杜华强,周国模,等.决策树结合混合像元分解的中国竹林遥感信息提取[J].遥感学报,2019,23(1):166-176. Cui L,Du H Q,Zhou G M,et al.Combination of decision tree and mixed pixel decomposition for extracting bamboo forest information in China[J].Journal of Remote Sensing,2019,23(1):166-176. [54] 刘晓娜,封志明,姜鲁光.基于决策树分类的橡胶林地遥感识别[J].农业工程学报,2013,29(24):163-172. Liu X N,Feng Z M,Jiang L G.Application of decision tree classification to rubber plantations extraction with remote sensing[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(24):163-172. [55] 吴健生,潘况一,彭建,等.基于QUEST决策树的遥感影像土地利用分类——以云南省丽江市为例[J].地理研究,2012,31(11):1973-1980. Wu J S,Pan K Y,Peng J,et al.Research on the accuracy of TM images land-use classification based on QUEST decision tree:A case study of Lijiang in Yunnan[J].Geographical Research,2012,31(11):1973-1980. [56] 陈超,傅姣琪,随欣欣,等.面向灾后水体遥感信息提取的知识决策树构建及应用[J].遥感学报,2018,22(5):792-801. Chen C,Fu J Q,Sui X X,et al.Construction and application of knowledge decision tree after a disaster for water body information extraction from remote sensing images[J].Journal of Remote Sensing,2018,22(5):792-801. [57] Lee S,Lee C W.Application of decision-tree model to groundwater productivity-potential mapping[J].Sustainability,2015,7(10):13416-13432. [58] Duan H J,Deng Z D,Deng F F,et al.Assessment of groundwater potential based on multicriteria decision making model and decision tree algorithms[J].Math Probl Eng,2016,2016:1-11. [59] Golkarian A,Naghibi S A,Kalantar B,et al.Groundwater potential mapping using C5.0,random forest,and multivariate adaptive regression spline models in GIS[J].Environ Monit Assess,2018,190(3):149. [60] 陈松灿,杨国庆,徐涛.人工神经网络[J].南京航空航天大学学报,1990,22(2):98-105. Chen S C,Yang G Q,Xu T.Artificial neural network[J].Journal of Nanjing Aeronautical Institute,1990,22(2):98-105. [61] 仇念广. 人工监督神经网络在煤层裂缝发育区识别中的应用[J].中国煤炭,2020,46(4):32-36. Qiu N G.Application of artificial supervised neural network in identification of fracture development area in coal seam[J].China Coal,2020,46(4):32-36. [62] 孟璐. 基于人工神经网络的矿井涌水量预测[J].煤炭与化工,2020,43(4):65-68. Meng L.Mine water volume prediction based on artificial neural networks[J].Coal and Chemical Industry,2020,43(4):65-68. [63] 马壮壮,束龙仓,季叶飞,等.基于遗传算法的BP神经网络计算岩溶水安全开采量[J].水文地质工程地质,2016,43(1):22-27. Ma Z Z,Shu L C,Ji Y F,et al.Calculation of karst water safe yield by using BP neural network based on genetic algorithm[J].Hydrogeology and Engineering Geology,2016,43(1):22-27. [64] 王宇,卢文喜,卞建民,等.三种地下水位动态预测模型在吉林西部的应用与对比[J].吉林大学学报:地球科学版,2015,45(3):886-891. Wang Y,Lu W X,Bian J M,et al.Comparison of three dynamic models for groundwater in western Jilin and the application[J].Journal of Jilin University:Earth Science Edition,2015,45(3):886-891. [65] 宋洪伟,刘继朝,石建省,等.ANN技术在地下水含水量预测建模中的研究与应用[J].中国地质,2012,39(4):1081-1086. Song H W,Liu J C,Shi J S,et al.The study and application of ANN to the modeling of underground water content forecast[J].Geology in China,2012,39(4):1081-1086. [66] 邹涛. 地下水水质评价中BP人工神经网络模型的应用研究[J].水土保持应用技术,2017(1):19-21. Zou T.Application of BP artificial neural network model in groundwater quality evaluation[J].Technology of Soil and Water Conservation,2017(1):19-21. [67] Lee S,Song K Y,Kim Y,et al.Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model[J].Hydrogeol J,2012,20(8):1511-1527. [68] Lee S,Hong S M,Jung H S.GIS-based groundwater potential mapping using artificial neural network and support vector machine models:The case of Boryeong City in Korea[J].Geocarto Int,2017,33(8):847-861. [69] Samson S,Elangovan K.Delineation of groundwater recharge potential zones in Namakkal District,Tamilnadu,India using remote sensing and GIS[J].J Indian Soc Remote Sens,2015,43(4):769-778. [70] Naghibi S A,Pourghasemi H R,Dixon B.GIS-based groundwater potential mapping using boosted regression tree,classification and regression tree,and random forest machine learning models in Ir-an[J].Environ Monit Assess,2016,188:44. [71] Nag S K,Ray S.Deciphering groundwater potential zones using geospatial technology:A study in Bankura Blocki and Block II,Bankura District,West Bengal[J].Arabian J Sci Eng,2015,40(1):205-214. [72] Parameswari K,Padmini T K.Assessment of groundwater potential in Tirukalukundram block of southern Chennai Metropolitan Area[J].Environ Dev Sust,2018,20(4):1535-1552. [73] Ebrahimi H,Rajaee T.Simulation of groundwater level variations using wavelet combined with neural network,linear regression and support vector machine[J].Glob Planet Change,2017,148:181-191. [74] Mohamed M M,Elmahdy S I.Fuzzy logic and multi-criteria methods for groundwater potentiality mapping at Al Fo’ah area,the United Arab Emirates (UAE):An integrated approach[J].Geocarto Int,2017,32(10):1120-1138. [75] Rodell M,Famiglietti J S.The potential for satellite-based monitoring of groundwater storage changes using GRACE:The High Plains aquifer,Central US[J].J Hydrol,2002,263(1/4):245-256. [76] 曹艳萍,南卓铜,胡兴林.利用GRACE重力卫星数据反演黑河流域地下水变化[J].冰川冻土,2012,34(3):680-689. Cao Y P,Nan Z T,Hu X L.Changes of groundwater storage in the Heihe River basin derived from GRACE gravity satellite date[J].Journal of Glaciology and Geocryology,2012,34(3):680-689. [77] 王超,杨涛.重力卫星监测的中国陆地水资源储量时空变化特征[J].水电能源科学,2013,31(7):20-23. Wang C,Yang T.Spatial-temporal characteristics of terrestrial water storage variations in China based on GRACE satellite date[J].Water Resources and Power,2013,31(7):20-23. [78] Fatolazadeh F,Voosoghi B,Naeeni M R.Wavelet and Gaussian approaches for estimation of groundwater variations using GRACE data[J].Ground Water,2016,54(1):74-81. [79] Skaskevych A,Lee J,Jung H C,et al.Application of GRACE to the estimation of groundwater storage change in a data-poor region:A case study of Ngadda catchment in the Lake Chad Basin[J].Hydrol Processes,2020,34(4):941-955. [80] Frappart F,Ramillien G.Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission:A review[J].Remote Sens,2018,10(6):829. [81] Lee E,Yoon H,Hyun S P,et al.Unmanned aerial vehicles (UAVs)-based thermal infrared (TIR) mapping,a novel approach to assess groundwater discharge into the coastal zone[J].Limnol Oceanogr,2016,14(11):725-735. [82] Bandini F,Butts M,Jacobsen T V,et al.Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction[J].Hydrol Processes,2017,31(24):4371-4383. [83] 李然,刘万增.无人机遥感与应急测绘——三大关键技术[J].中国减灾,2020(11):34-36. Li R,Liu W Z.Unmanned aerial vehicle remote sensing and emergency mapping:Three key technologies[J].Disaster Reduction in China,2020(11):34-36. [84] 倪用鑫,吕锡芝,杨二,等.无人机低空遥测技术在水土保持监测中的应用研究[J].中国水土保持,2020(4):33-35. Ni Y X,Lv X Z,Yang E,et al.Application of unmanned aerial vehicle low altitude telemetry technology in soil and water conservation monitoring[J].Soil and Water Conservation in China,2020(4):33-35. |
[1] |
LIAO Xiaohan, SHI Chunxiang, WANG Bing. Construction of comprehensive observation system of natural resource elements based on UAV remote sensing, data fusion and ecological value[J]. , 2021, 8(2): 4-4. |
[2] |
WANG Haoqian, WANG Mingming, LIU An, GUO Zhenbin, WANG Botao. Remote sensing survey and results analysis of geological resources for tourism in Yangquan area of Shanxi Province[J]. , 2020, 7(6): 96-102. |
[3] |
WAN Junwei, WANG Mingzhu, LIU Zhitao, YANG Yabin, LIU Yi, ZHAO Shuxing. Analysis of the effect of Water Diversion and Source Supplement Project on groundwater recharge in Daixi River Basin[J]. , 2020, 7(6): 86-95. |
[4] |
HUANG Meng, ZHANG Xuebin, HAN Rongwen, LI Jijun. Application of Digital Elevation Model in the geological mapping of the coastal plain of Tianjin[J]. , 2020, 7(5): 123-133. |
[5] |
TANG Yao, WANG Lijuan, ZHAO Juan, ZHANG Chengxin. Application of remote sensing technology in emergency rescue decision about “6·17” Danba River debris flow disaster chain[J]. , 2020, 7(5): 114-122. |
[6] |
LI Li, WU Xing, GUO Ya. Temporal and spatial variation analysis of the coastline of northwestern Hainan Island[J]. , 2019, 6(2): 87-93. |
|
|
|
|