|
|
Theories and practice of the comprehensive regionalization of natural resources at a long time scale: A case study of Qinghai-Tibet Plateau |
HUANG Li1, LIU Xiaohuang2,4, LIU Jiufen2, LIU Xiaojie3, ZHANG Haiyan3 |
1. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China; 2. Natural Resources Comprehensive Survey Command Center, China Geological Survey, Beijing 100055, China; 3. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 4. Key Laboratory of Coupling Process and Effect of Natural Resoures Elements,Beijing 100055, China |
|
|
Abstract Comprehensive regionalization of natural resources is the basis of unified management and utilization of natural resources, and its dynamic change is an important scientific basis for the sustainable utilization of natural resources. Due to the high altitude and cold climate of Qinghai-Tibet Plateau, the largest glacier remains are distributed here except the Polar Regions. The extreme environment and climate have a great impact on the distribution of natural resources. With remote sensing and geographic information system technology, the authors in this paper have selected 14 indicators including glacier snow cover, and used the K-means clustering algorithm to cluster the comprehensive index of natural resources to determine the regionalization range. By using the combination of "top-down" deduction method and "bottom-up" induction method, the division grade was determined. Besides, the comprehensive division of natural resources in the study area was established to discuss the dynamic division changes of the comprehensive division of Qinghai-Tibet Plateau from 1990 to 2018 and analyze the dynamic change characteristics and spatial differences of natural resources. The research results could help researchers to clearly understand the relationship and evolution trend of natural resources in Qinghai-Tibet Plateau, and provide a case for the interdisciplinary application of regionalization.
|
Received: 01 March 2021
|
|
|
|
|
[1] Xu K P,Wang J N,Wang J J,et al.Environmental function zoning for spatially differentiated environmental policies in China[J].J Environ Manage,2020,255:109485. [2] Wu S H,Yin Y H,et al.Zheng D.Advances in terrestrial system research in China[J].J Geogr Sci,2016,26(7):791-802. [3] 郑度,杨勤业,顾钟熊.地理学术思想及其实践——纪念黄秉维院士诞辰九十周年[J].地理研究,2003,22(2):133-139. Zheng D,Yang Q Y,Gu Z X.Academician HUANG Bing-wei’s geographical academic thought and its application:in commemoration of the 90th anniversary of the birth of HUANG Bingwei[J].Geogr Res,2003,22(2):133-139. [4] 周璞,侯华丽,吴尚昆.我国矿产资源自然区划研究[J].中国矿业,2019,28(2):29-33. Zhou P,Hou H L,Wu S K.Preliminary study on natural zoning of mineral resources in China[J].China Mining Magazine,2019,28(2):29-33. [5] 竺可桢. 中国气候区域论[J].地理杂志,1930,3(2). Zhu K Z.Climate regionalism in China[J].J Geogr,1930,3(2). [6] 林超. 中国自然区划大纲(摘要)[J].地理学报,1954,20(4):395-418. Lin C.Natural division outline of China(abstract)[J].Acta Geogr Sin,1954,20(4):395-418. [7] 罗开富. 中国自然地理分区草案[J].地理学报,1954,20(4):379-394. Luo K F.A draft for physical geography regionalization of Chi-na[J].Acta Geogr Sin,1954,20(4):379-394. [8] 黄秉维. 论中国综合自然区划[J].新建设,1965(3):65-74. Huang B W.On the comprehensive natural division of China[J].New Arch,1965(3):65-74. [9] 段华平,朱琳,孙勤芳,等.农村环境污染控制区划方法与应用研究[J].中国环境科学,2010,30(3):426-432. Duan H P,Zhu L,Sun Q F,et al.Regionalization method and its application of rural environmental pollution control[J].China Environ Sci,2010,30(3):426-432. [10] 赵岩,王治国,孙保平,等.中国水土保持区划方案初步研究[J].地理学报,2013,68(3):307-317. Zhao Y,Wang Z G,Sun B P,et al.A primary study on scheme of soil and water conservation regionalization in China[J].Acta Geogr Sin,2013,68(3):307-317. [11] 念沛豪,蔡玉梅,谢秀珍,等.基于生态位理论的湖南省国土空间综合功能分区[J].资源科学,2014,36(9):1958-1968. Nian P H,Cai Y M,Ma S Z,et al.Geographical space comprehensive function zoning in Hunan province based on niche theo-ry[J].Resour Sci,2014,36(9):1958-1968. [12] 李丽纯,陈福梓,王加义,等.基于GIS的台湾青枣在福建引扩种的气候适宜性区划[J].中国生态农业学报,2017,25(1):47-54. Li L C,Chen F Z,Wang J Y,et al.Climate suitability regionalization for Taiwan green jujube introduction and expansion in Fujian Province using GIS[J].Chinese Journal of Eco-Agriculture,2017,25(1):47-54. [13] 张海燕,樊江文,黄麟,等.中国自然资源综合区划理论研究与技术方案[J].资源科学,2020,42(10):1870-1882. Zhang H Y,Fan J W,Huang L,et al.Theories and technical methods for the comprehensive regionalization of natural resources in China[J].Resour Sci,2020,42(10):1870-1882. [14] 黄姣,高阳,赵志强,等.基于GIS与SOFM网络的中国综合自然区划[J].地理研究,2011,30(9):1648-1659. Huang J,Gao Y,Zhao Z Q,et al.Comprehensive physiographic regionalization of China using GIS and SOFM neural network[J].Geogr Res,2011,30(9):1648-1659. [15] Huang X,Zhang L P.An SVM ensemble approach combining spectral,structural,and semantic features for the classification of high-resolution remotely sensed imagery[J].IEEE Trans Geosci Remote Sens,2013,51(1):257-272. [16] 吴绍洪,潘韬,刘燕华,等.中国综合气候变化风险区划[J].地理学报,2017,72(1):3-17. Wu S H,Pan T,Liu Y H,et al.Comprehensive climate change risk regionalization of China[J].Acta Geogr Sin,2017,72(1):3-17. [17] Qiu J.China:the third pole[J].Nature,2008,454(7203):393-396. [18] 张瑞江. 青藏高原冰川演变与生态地质环境响应[J].中国地质调查,2016,3(2):46-50. Zhang R J.Glacier change and eco-geological environment response in Tibetan Plateau[J].Geol Surv China,2016,3(2):46-50. [19] Zuo X A,Zhang J,Lv P,et al.Effects of plant functional diversity induced by grazing and soil properties on above-and belowground biomass in a semiarid grassland[J].Ecol Indic,2018,93:555-561. [20] Molnar P,England P.Late Cenozoic uplift of mountain ranges and global climate change:chicken or egg?[J].Nature,1990,346(6279):29-34. [21] 毛汉英. 人地系统优化调控的理论方法研究[J].地理学报,2018,73(4):608-619. Mao H Y.Theories and methods of optimal control of human-earth system:commemoration of 100th anniversary of academician Wu Chuanjun’s birth[J].Acta Geogr Sin,2018,73(4):608-619. [22] 高湘昀,安海忠,刘红红.我国资源环境承载力的研究评述[J].资源与产业,2012,14(6):116-120. Gao X Y,An H Z,Liu H H.Views on China’s resources and environmental loading capacity[J].Resources & Industries,2012,14(6):116-120. [23] 徐新良,张亚庆.中国气象背景数据集.中国科学院资源环境[EB/OL].2021-2-19.http://www.resdc.cn/DOI/doi.aspx?DOIid=39. Xu X L,Zhang Y Q.China Meteorological Bachground Data Set.China Academy of Sctences Resources and Environment[EB/OL].2021-2-19.http://www.resdc.cn/DOI/doi.aspx?DOIid=39. [24] 鲁春霞,谢高地,肖玉,等.青藏高原生态系统服务功能的价值评估[J].生态学报,2004,24(12):2749-2755. Lu C X,Xie G D,Xiao Y,et al.Ecosystem diversity and economic valuation of Qinghai-Tibet Plateau[J].Acta Ecol Sin,2004,24(12):2749-2755. [25] 董李勤,章光新.全球气候变化对湿地生态水文的影响研究综述[J].水科学进展,2011,22(3):429-436. Dong L Q,Zhang G X.Review of the impacts of climate change on wetland ecohydrology[J].Adv Water Sci,2011,22(3):429-436. [26] 王绍武. 近百年我国及全球气温变化趋势[J].气象,1990,16(2):11-15. Wang S W.Variations of temperature in China for the 100 year period in comparison with global temperatures[J].Meteor Mon,1990,16(2):11-15. |
[1] |
LIU Yan. Analysis of global climate change in the next one hundred years[J]. , 2021, 8(3): 1-11. |
[2] |
WANG Peng, WANG Yanhe, HAN Xiaolong, HAN Hao, ZHANG Deming, ZHANG Bingqiang. Dynamic changes of vegetation coverage in Heihe River Basin from 1990 to 2019 and the effect of temperature on it[J]. , 2021, 8(3): 64-71. |
[3] |
CHU Liang, DONG Shiling, FU Lili, XU Lei. Construction exploration of municipality-level natural resources surveying and monitoring system:A case study of Xuzhou[J]. , 2021, 8(3): 106-112. |
[4] |
LIAO Xiaohan, SHI Chunxiang, WANG Bing. Construction of comprehensive observation system of natural resource elements based on UAV remote sensing, data fusion and ecological value[J]. , 2021, 8(2): 4-4. |
[5] |
HAN Xiaolong, WANG Peng, PANG Wenlong, HAN Hao, REN Yongji, ZHANG Bingqiang. Research on the response mechanism of coupling and coordination between natural resources and social economy in the Lower Heihe River Basin:A case study of Ejina Banner in Alxa League[J]. , 2021, 8(2): 27-36. |
[6] |
YUAN Chengcheng, GAO Yang, LIU Xiaohuang. Current situation and consummate suggestions for natural resources classification systems in China[J]. , 2021, 8(2): 14-19. |
|
|
|
|