|
|
Chronology, geochemical characteristics and prospecting significance of the granite porphyry in Cuojie area of Middle Gangdise in Tibet |
HU Lin, XU Lin, XIAO Jin, XU Gang, LUO Shaoqiang |
Northwest Sichuan Geological Team, Bureau of Geology and Mineral Resources Exploration and Development of Sichuan Province, Sichuan Mianyang 621000, China |
|
|
Abstract A set of malachite-bearing granite porphyry was found in Cuojie area of the Middle Gangdise in Tibet. In order to determine the age, genesis and prospecting significance of the granite porphyry, the authors have conducted the petrographic, LA-ICP-MS zircon U-Pb chronology and geochemical characteristics of the granite porphyry. The results show that the zircons in the granite porphyry are of magmatic origin, with a weighted ave-rage age of 206Pb/238U of (13.9±0.2) Ma, and the intrusive age is Miocene. The geochemical characteristics of major elements show that the granite porphyry is characterized by high SiO2, high Al2O3, rich alkali, and rich sodium calc-alkalic characteristics. The geochemical characteristics of trace elements show that the granitic porphyry is rich in large ion lithophile elements such as U, Th, and depleted in high field strength elements such as Nb and Yb. The total amount of rare earth elements is (47.4~141.4) ×10-6, and the light rare earth elements are relatively rich with positive Eu anomaly. The granitic porphyry was formed by partial melting of the thickened lower crust, and partial separation crystallization may have occurred during the formation process, through comprehensive analysis. By comparing the geological characteristics of the granite porphyry with the typical deposits in the region, it is found that the granite porphyry in Cuojie area has similar geological characteristics and metallogenic system with the Gangdise porphyry copper deposit. And there may be a large ore-bearing porphyry buried in the deep, which briags a better prospecting prospect.
|
Received: 21 July 2020
|
|
|
|
|
[1] Cooke D R,Hollings P,Walshe J L.Giant porphyry deposits:Cha-racteristics,distribution,and tectonic controls[J].Econ Geol,2005,100(5):801-818. [2] Singer D A,Berger V I,Menzie W D,et al.Porphyry copper deposit density[J].Econ Geol,2005,100(3):491-514. [3] Sillitoe R H.Porphyry copper systems[J].Econ Geol,2010,105(1):3-41. [4] 侯增谦,郑远川,杨志明,等.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统[J].矿床地质,2012,31(4):647-670. Hou Z Q,Zheng Y C,Yang Z M,et al.Metallogenesis of continental collision setting:Part Ⅰ.Gangdese Cenozoic porphyry Cu-Mo systems in Tibet[J].Miner Dep,2012,31(4):647-670. [5] 朱小三,卢民杰,程文景,等.安第斯与冈底斯成矿带斑岩铜矿床矿物学和成矿斑岩地球化学特征对比[J].地质通报,2017,36(12):2143-2153. Zhu X S,Lu M J,Cheng W J,et al.Comparison of geological mi-neralogy and geochemical characteristics between ore-bearing porphyries of porphyry deposits in the Andean and the Gandise metallogenic belts[J].Geol Bull China,2017,36(12):2143-2153. [6] 郑有业,张刚阳,许荣科,等.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J].科学通报,2007,52(21):2542-2548. Zheng Y Y,Zhang G Y,Xu R K,et al.Age limit of ore-forming and rock-forming in Zhuruo porphyry copper deposit,Gangdese,Tibet[J].Chin Sci Bull,2007,52(21):2542-2548. [7] 唐菊兴,邓世林,郑文宝,等.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质,2011,30(2):179-196. Tang J X,Deng S L,Zheng W B,et al.An exploration model for Jiama copper polymetallic deposit in Maizhokunggar County,Ti-bet[J].Miner Dep,2011,30(2):179-196. [8] 侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑),2003,33(7):609-618. Hou Z Q,Qu X X,Wang S X,et al.Re-Os ages of molybdenite in the Gangdese porphyry copper belt in south Tibet:Duration of mineralization and application of the dynamic setting[J].Sci China (Ser D),2003,33(7):609-618. [9] 张刚阳,郑有业,龚福志,等.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J].岩石学报,2008,24(3):473-479. Zhang G Y,Zheng Y Y,Gong F Z,et al.Geochronologic constraints on magmatic intrusions and mineralization of the Jiru porphyry copper deposit,Tibet,associated with continent-continent collisional process[J].Acta Petrol Sin,2008,24(3):473-479. [10] Hou Z Q,Yang Z M,Qu X M,et al.The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J].Ore Geol Rev,2009,36(1/2/3):25-51. [11] 唐菊兴,陈毓川,王登红,等.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,2009,83(5):698-704. Tang J X,Chen Y C,Wang D H,et al.Re-Os dating of molybdenite from the Sharang porphyry molybdenum deposit in Gongbo'gyamda County,Tibet and its geological significance[J].Acta Geol Sin,2009,83(5):698-704. [12] Zheng Y C,Fu Q,Hou Z Q,et al.Metallogeny of The northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane,southern Tibet[J].Ore Geol Rev,2015,70:510-532. [13] 潘桂棠,王立全,张万平,等.青藏高原及邻区大地构造图及说明书:1:1500000[M].北京:地质出版社,2013. Pan G T,Wang L Q,Zhang W P,et al.Geotectonic Map and Manual of Qinghai-Tibet Plateau and Adjacent Areas[M].Beijing:Geological Publishing House,2013. [14] 胡林,徐刚,刘大明.冈底斯中段容果地区二长花岗岩锆石U-Pb年龄及其地球化学特征[J].中国地质调查,2020,7(4):67-75. Hu L,Xu G,Liu D M.Zircon U-Pb ages and geochemistry of the monzonitic granite in Rongguo area in Middle Gangdise Belt[J].Geol Surv China,2020,7(4):67-75. [15] Liu Y S,Hu Z C,Zong K Q,et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chin Sci Bull,2010,55(15):1535-1546. [16] 侯振辉,王晨香.电感耦合等离子体质谱法测定地质样品中35种微量元素[J].中国科学技术大学学报,2007,37(8):940-944. Hou Z H,Wang C X.Determination of 35 trace elements in geological samples by inductively coupled plasma mass spectrome-try[J].J Univ Sci Technol China,2007,37(8):940-944. [17] Corfu F,Hanchar J M,Hoskin P W O,et al.Atlas of zircon textures[J].Rev Mineral Geochem,2003,53(1):469-500. [18] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604. Wu Y B,Zheng Y F.Genesis of zircon and its constraints on interpretation of U-Pb age[J].Chin Sci Bull,2004,49(15):1554-1569. [19] Le Bas M J,Le Maitre R W,Streckeisen A,et al.A chemical classification of volcanic rocks based on the total alkali-silica diagram[J].J Petrol,1986,27(3):745-750. [20] Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].GSA Bull,1989,101(5):635-643. [21] 张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006,22(9):2249-2269. Zhang Q,Wang Y,Li C D,et al.Granite classification on the basis of Sr and Yb contents and its implications[J].Acta Petrol Sin,2006,22(9):2249-2269. [22] Boynton W V.Cosmochemistry of the rare earth elements:Meteo-rite studies[J].Dev Geochem,1984,2:63-114. [23] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and proce-sses[M]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.London:Geological Society of London,1989:313-345. [24] 李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,2004,28(2):165-170. Li G M,Rui Z Y.Diagenetic and mineralization ages for the porphyry copper deposits in the Gangdise metallogenic belt, Southern Xizang[J].Geotect Metallog,2004,28(2):165-170. [25] 杨志明,谢玉玲,李光明,等.西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究[J].矿床地质,2005,24(6):584-594. Yang Z M,Xie Y L,Li G M,et al.Study of fluid inclusions from Tinggong porphyry copper deposit in Gangdese belt,Tibet[J].Miner Dep,2005,24(6):584-594. [26] 杨志明,谢玉玲,李光明,等.西藏冈底斯斑岩铜矿带成矿流体的扫描电镜(能谱)约束——以驱龙和厅宫矿床为例[J].矿床地质,2006,25(2):147-154. Yang Z M,Xie Y L,Li G M,et al.SEM/EDS constraints on nature of ore-forming fluids in Gangdese porphyry copper belt:Case studies of Qulong and Tinggong deposits[J].Miner Dep,2006,25(2):147-154. [27] 李金祥,秦克章,李光明,等.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄:对岩浆-热液系统演化和成矿构造背景的制约[J].岩石学报,2007,23(5):953-966. Li J X,Qin K Z,Li G M,et al.K-Ar and 40Ar/39Ar age dating of Nimu porphyry copper Orefield in Central Gangdese:Constrains on magmatic-hydrothermal evolution and metallogenetic tectonic setting[J].Acta Petrol Sin,2007,23(5):953-966. [28] 杜等虎,杨志明,李秋耘,等.西藏厅宫矿区始新世斑岩的厘定及其地质意义[J].矿床地质,2012,31(4):745-757. Du D H,Yang Z M,Li Q Y,et al.Determination of Eocene porphyritic monzogranite intrusions in Tinggong ore district of Tibet and its geological significance[J].Miner Dep,2012,31(4):745-757. [29] 杜等虎,杨志明,刘云飞,等.西藏厅宫斑岩铜矿床地质、蚀变及矿化特征研究[J].岩石矿物学杂志,2015,34(4):447-474. Du D H,Yang Z M,Liu Y F,et al.Geology,alteration and mine-ralization of the Tinggong porphyry Cu deposit in southern Ti-bet[J].Acta Petrol Mineral,2015,34(4):447-474. [30] 芮宗瑶,李光明,张立生,等.西藏斑岩铜矿对重大地质事件的响应[J].地学前缘,2004,11(1):145-152. Rui Z Y,Li G M,Zhang L S,et al.The response of porphyry copper deposits to important geological events in Xizang[J].Earth Sci Front,2004,11(1):145-152. [31] 芮宗瑶,侯增谦,曲晓明,等.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,2003,22(3):217-225. Rui Z Y,Hou Z Q,Qu X M,et al.Metallogenetic epoch of Gangdese porphyry copper belt and uplift of Qinghai-Tibet Pla-teau[J].Miner Dep,2003,22(3):217-225. [32] 郑有业,薛迎喜,程力军,等.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义[J].地球科学——中国地质大学学报,2004,29(1):103-108. Zheng Y Y,Xue Y X,Cheng L J,et al.Finding,characteristics and significances of Qulong Superlarge porphyry copper (molybdenum) deposit,Tibet[J].Earth Sci J China Univ Geosci,2004,29(1):103-108. [33] 曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,2001,20(4):355-366. Qu X M,Hou Z Q,Huang W.Is Gangdese porphyry copper belt the second “Yulong” copper belt?[J].Miner Dep,2001,20(4):355-366. [34] Defant M J,Drummond M S.Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature,1990,347(6294):662-665. [35] Gao S,Rudnick R L,Yuan H L,et al.Recycling lower continental crust in the North China Craton[J].Nature,2004,432(7019):892-897. [36] 孟繁一,赵志丹,朱弟成,等.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因[J].岩石学报,2010,26(7):2180-2192. Meng F Y,Zhao Z D,Zhu D C,et al.Petrogenesis of Late Cretaceous adakite-like rocks in Mamba from the eastern Gangdese,Tibet[J].Acta Petrol Sin,2010,26(7):2180-2192. [37] Martin H.Adakitic magmas:Modern analogues of Archaean granitoids[J].Lithos,1999,46(3):411-429. [38] 胡林,唐华,徐刚,等.冈底斯中段羊易盆地年波组埃达克岩的发现及其对印度-欧亚板块碰撞的启示[J].地质通报,2020,39(10):1507-1517 Hu L,Tang H,Xu G,et al.The discovery and implications for the India-Eurasia Plate collision of the Nianbo Formation adakitic rocks from Yangyi basin in Middle Gangdise belt[J].Geol Bull China,2020,39(10):1507-1517. [39] 申宇,曾令森,高家昊,等.西藏南部冈底斯岩基曲林岩体渐新世—中新世高Sr/Y比岩浆作用及其对深部过程的启示[J].岩石学报,2020,36(9):2646-2666. Shen Y,Zeng L S,Gao J H,et al.Oligocene-Miocene high Sr/Y magmatism and implications for deep processes of Qulin pluton in Gangdese batholith,southern Tibet[J].Acta Petrol Sin,2020,36(9):2646-2666. [40] 姜华,李文昌,张雄,等.西藏岗讲斑岩铜钼矿床花岗闪长斑岩锆石U-Pb年代学及地球化学特征[J].矿物岩石地球化学通报,2020,39(5):961-972. Jiang H,Li W C,Zhang X,et al.The zircon U-Pb chronology and geochemical characteristics of granodiorite porphyry in the Gangjiang porphyry Cu-Mo deposit,Tibet,China[J].Bull Mi-neral Petrol Geochem,2020,39(5):961-972. [41] 高成,李德威,刘德民,等.西藏冈底斯南缘中新世含矿斑岩源区组成与成因[J].大地构造与成矿学,2014,38(4):962-983. Gao C,Li D W,Liu D M,et al.Petrogenesis of the Miocene ore-bearing granite porphyries in the Southern Gangdese,Tibet[J].Geotect Metallog,2014,38(4):962-983. [42] Defant M J,Xu J F,Kepezhinskas P,et al.Adakites:Some variations on a theme[J].Acta Petrol Sin,2002,18(2):129-142. [43] Rapp R P,Watson E B.Dehydration melting of metabasalt at 8-32 kbar:Implications for continental growth and crust-mantle recycling[J].J Petrol,1995,36(4):891-931. [44] 张旗. 关于C型埃达克岩成因的再探讨[J].岩石矿物学杂志,2011,30(4):739-747. Zhang Q.Reappraisal of the origin of C-type adakitic rocks from East China[J].Acta Petrol Mineral,2011,30(4):739-747. [45] 坚润堂,赵献昆,姜华.西藏尼木斑岩铜多金属矿区岩浆岩地球化学特征及成因探讨[J].科学技术与工程,2016,16(4):141-147,151. Jian R T,Zhao X K,Jiang H.Geochemical characteristics of magmatic rock in Nimu porphyry copper polymetallic deposit in Tibet and its implications for petrogenesis[J].Sci Technol Eng,2016,16(4):141-147,151. [46] 胡永斌. 冈底斯斑岩铜矿带埃达克岩成因及成矿启示[D].广州:中国科学院研究生院(广州地球化学研究所),2015. Hu Y B.Petrogenesis and Metallogenetic Implications of Aadakites in the Gangdese Porphyry Copper Belt[D].Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2015. |
[1] |
YU Junbo, ZHOU Chuanfang, LIANG Zhongkai, SUN Yanfeng, JIANG Ping, HU Chen. Spatial distribution patterns of soil chemical elements in important ecological function areas: A case study in Songling area of the Greater Khingan Mountains[J]. , 2021, 8(6): 105-113. |
[2] |
XIE Xi, LI Bin, DU Yudiao. Soil geochemical characteristics and the prospecting effect of Dalong area in Ningguo City of Anhui Province[J]. , 2021, 8(3): 40-48. |
[3] |
WU Wenhui, ZHAO Chun, ZHAN Hanyu, QIN Yulong, LI Mingze, XU Yunfeng. Geochemical characteristics of the pegmatite veins in Shaotangou area, Jiajika of Western Sichuan Province[J]. , 2021, 8(1): 71-79. |
[4] |
LI Mingze, QIN Yulong, ZHAO Chun, ZHAN Hanyu, ZHOU Xiong, SUN Guangyin. LA-ICP-MS zircon U-Pb geochronology and geochemistry of the intermediate-acid intrusion in the periphery of Jiajika deposits in Western Sichuan Province[J]. , 2020, 7(5): 1-9. |
[5] |
LIU Yanliang, GAO Ya, JI Wenzhong, WANG Jing, ZHANG Chunli. Metallogenic regularity and mineral prediction of metallic deposits in Baiyin mine field and its periphery of Gansu Province[J]. , 2020, 7(4): 43-53. |
[6] |
HU Lin, XU Gang, LIU Daming. Zircon U-Pb ages and geochemistry of the monzonitic granite in Rongguo area in Middle Gangdise Belt[J]. , 2020, 7(4): 67-75. |
|
|
|
|