|
|
Fission track technology and its geological applications |
YANG Li, YUAN Wanming, HONG Shujiong, FENG Zirui |
Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China |
|
|
Abstract The fission track technology has been applied to many geological applications with advantages of less sample consumption, lower closure temperature and wider dating range. For example, fully or partially annealed samples can effectively record the cooling-exhumation history and constrain the onset of thrust fault activity. The relationship between the weathering and denudation history of the overlying rocks and the preservation of the deposit can be used to quantify the amount of denudation and uplift in the deposit and to predict the mineralization. The fission track closure temperature of zircon is corresponding to the temperature interval of gas production, which can also be applied to oil and gas exploration studies. Recently, the combination of elemental content analysis with fission track techniques was also allowed for provenance analysis, and the implementation of LA-ICP-MS technology has brought the dawning for low U content mineral track measurements. The authors in this paper briefly summarize the results of fission annealing studies of apatite and zircon and the possible implications for data interpretation. The apatite annealing is affected by temperature, chemical composition, crystallographic anisotropy, and Dpar value, while zircon track thermal stability is reduced mainly due to radiation damage effects. Laboratory annealing characterization provides an important theoretical reference for understanding the complex chemical dynamics of fission track annealing, but actual data interpretation must be combined with geological facts to obtain a clearer temporal framework for studying the evolution of geothermal events. The typical case studies of track dating on mineral deposits, mountain uplift denudation and basin thermal history were briefly analyzed in this paper, which would provide guidelines for relevant application studies of fission track.
|
Received: 03 July 2021
|
|
Fund:国家自然科学基金项目“战略性关键金属超常富集成矿动力学(编号: 92062217)”; “钼同位素在岩浆热液系统的分馏机制(编号: 41730427)2021年度中国地质大学(北京)研究生创新资助项目“; 茶卡北山Li-Be等关键金属成矿带隆升剥蚀研究(编号: YB2021YC021)”联合资助 |
|
|
|
[1] Boztuğ D,Jonckheere R C.Apatite fission track data from central Anatolian granitoids (Turkey):Constraints on Neo-Tethyan closure[J].Tectonics,2007,26(3):TC3011. [2] Zheng D W,Zhang P Z,Wan J L,et al.Rapid exhumation at~ 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin[J].Earth Planet Sci Lett,2006,248(1-2):198-208. [3] Grimmer J C,Jonckheere R,Enkelmann E,et al.Cretaceous? Cenozoic history of the southern Tan-Lu fault zone:apatite fission-track and structural constraints from the Dabie Shan (eastern China)[J].Tectonophysics,2002,359(3/4):225-253. [4] Yu J X,Zheng D W,Pang J Z,et al.Miocene range growth along the Altyn Tagh Fault:Insights from apatite fission track and (U‐Th)/He thermochronometry in the western Danghenan Shan,China[J].J Geophys Res Solid Earth,2019,124(8):9433-9453. [5] Pang J Z,Yu J X,Zheng D W,et al.Constraints of new apatite fission-track ages on the tectonic pattern and geomorphic development of the northern margin of the Tibetan Plateau[J].J Asian Earth Sci,2019,181:103909. [6] Gallagher K,Brown R,Johnson C.Fission track analysis and its applications to geological problems[J].Ann Rev Earth Planet Sci,1998,26:519-572. [7] 周祖翼. 低温年代学:原理与应用[M].北京:科学出版社,2014. Zhou Z Y.Low Temperature Thermochronology:Principles & Applications[M].Beijing:Science Press,2014. [8] Donelick R A,Miller D S.Enhanced tint fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks:A model and experimental observations[J].Int J Radiat Applicat Instrumentat Part D Nucl Tracks Radiat Meas,1991,18(3):301-307. [9] Wagner G A,Reimer G M,Carpenter B S,et al.The spontaneous fission rate of U-238 and fission track dating[J].Geochim Cosmochim Acta,1975,39(9):1279-1286. [10] 庞建章. 基于LA-ICP-MS的磷灰石裂变径迹年龄测试方法及祁连山新生代扩展研究[D].北京:中国地震局地质研究所,2019. Pang J Z.Apatite Fission-Track Dating by LA-ICP-MS and Neogene Expansion of the Qilian Shan,North Tibetan Pla-teau[D].Beijing:Institute of Geology,China Earthquake Administration. [11] Cogné N,Chew D M,Donelick R A,et al.LA-ICP-MS apatite fission track dating:A practical zeta-based approach[J].Chem Geol,2020,531:119302. [12] Vermeesch P.Statistics for LA-ICP-MS based fission track dating[J].Chem Geol,2017,456:19-27. [13] Naeser C W,Faul H.Fission track annealing in apatite and sphene[J].J Geophys Res,1969,74(2):705-710. [14] Gleadow A J W,Hurford A J,Quaife R D.Fission track dating of zircon:Improved etching techniques[J].Earth Planet Sci Lett,1976,33(2):273-276. [15] Yu J X,Zheng D W,Pang J Z,et al.Miocene range growth along the Altyn Tagh Fault:Insights from apatite fission track and (U‐Th)/He thermochronometry in the western Danghenan Shan,China[J].J Geophys Res Solid Earth,2019,124(8):9433-9453. [16] He P J,Song C H,Wang Y D,et al.Cenozoic exhumation in the Qilian Shan,northeastern Tibetan Plateau:Evidence from detrital fission track thermochronology in the Jiuquan Basin[J].J Geophys Res Solid Earth,2017,122(8):6910-6927. [17] Wildman M,Brown R,Persano C,et al.Contrasting Mesozoic evolution across the boundary between on and off craton regions of the South African plateau inferred from apatite fission track and (U-Th-Sm)/He thermochronology[J].J Geophys Res Solid Earth,2017,122(2):1517-1547. [18] Sun M,Lin S Y,Zhang F F,et al.Post-ore change and preservation of the late Paleozoic Tuwu porphyry Cu deposit in Eastern Tianshan,NW China:Constraints from geology and apatite fission track thermochronology[J].Ore Geol Rev,2021,137:104297. [19] Ketcham R A,Donelick R A,Carlson W D.Variability of apatite fission-track annealing kinetics:III.Extrapolation to geological time scales[J].Am Mineral,1999,84(9):1235-1255. [20] Barbarand J,Carter A,Wood I,et al.Compositional and structural control of fission-track annealing in apatite[J].Chem Geol,2003,198(1/2):107-137. [21] Yuan W M,Qiugen Z,Bao Z K,et al.Zircon fission track thermochronology constraints on mineralization epochs in Altai Mountains,northern Xinjiang,China[J].Radiat Meas,2009,44(9/10):950-954. [22] Yang L,Yuan W M,Zhu X Y,et al.Late Triassic-cenozoic thermochronology in the Southern Sanjiang Tethys,SW China,new insights from zircon fission track analysis[J].J Earth Sci,2019,30(5):996-1004. [23] Fleischer R L,Price P B,Walker R M.Effects of temperature,pressure,and ionization of the formation and stability of fission tracks in minerals and glasses[J].J Geophys Res,1965,70(6):1497-1502. [24] Krishnaswami S,Lal D,Prabhu N,et al.Characteristics of fission tracks in zircon:Applications to geochronology and cosmo-logy[J].Earth Planet Sci Lett,1974,22(1):51-59. [25] Yamada R,Tagami T,Nishimura S.Confined fission-track length measurement of zircon:Assessment of factors affecting the paleotemperature estimate[J].Chem Geol,1995,119(1/2/3/4):293-306. [26] Tagami T.Zircon fission-track thermochronology and applications to fault studies[J].Rev Mineral Geochem,2005,58(1):95-122. [27] Tagami T,Carter A,Hurford A J.Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples:Constraints upon the partial annealing zone and closure temperature[J].Chem Geol,1996,130(1/2):147-157. [28] Rahn M K,Brandon M T,Batt G E,et al.A zero-damage model for fission-track annealing in zircon[J].Am Mineral,2004,89(4):473-484. [29] Yamada R,Yoshioka T,Watanabe K,et al.Comparison of experimental techniques to increase the number of measurable confined fission tracks in zircon[J].Chem Geol,1998,149(1/2):99-107. [30] Garver J I,Kamp P J J.Integration of zircon color and zircon fission-track zonation patterns in orogenic belts:Application to the Southern Alps,New Zealand[J].Tectonophysics,2002,349(1-4):203-219. [31] Yamada R,Tagami T,Nishimura S,et al.Annealing kinetics of fission tracks in zircon:An experimental study[J].Chem Geol,1995,122(1-4):249-258. [32] Li W X,Wang L M,Sun K,et al.Porous fission fragment tracks in fluorapatite[J].Phys Rev B,2010,82(14):144109. [33] Li W X,Wang L M,Lang M,et al.Thermal annealing mechanisms of latent fission tracks:Apatite vs.zircon[J].Earth Planet Sci Lett,2011,302(1/2):227-235. [34] Bernet M.A field-based estimate of the zircon fission-track closure temperature[J].Chem Geol,2009,259(3/4):181-189. [35] Hasebe N,Mori S,Tagami T,et al.Geological partial annealing zone of zircon fission-track system:Additional constrains from the deep drilling MITI-Nishikubiki and MITI-Mishima[J].Chem Geol,2003,199(1/2):45-52. [36] Green P F.The relationship between track shortening and fission track age reduction in apatite:Combined influences of inherent instability,annealing anisotropy,length bias and system calibra-tion[J].Earth Planet Sci Lett,1988,89(3/4):335-352. [37] Carlson W D,Donelick R A,Ketcham R A.Variability of apatite fission-track annealing kinetics:I.Experimental results[J].Am Mineral,1999,84(9):1213-1223. [38] Gleadow A J W,Duddy I R,Green P F,et al.Confined fission track lengths in apatite:A diagnostic tool for thermal history analysis[J].Contr Mineral Petrol,1986,94(4):405-415. [39] Jonckheere R,Enkelmann E,Min M Y,et al.Confined fission tracks in ion-irradiated and step-etched prismatic sections of Durango apatite[J].Chem Geol,2007,242(1/2):202-217. [40] Tagami T,Ito H,Nishimura S.Thermal annealing characteristics of spontaneous fission tracks in zircon[J].Chem Geol Isotope Geosci Sect,1990,80(2):159-169. [41] Hasebe N,Tagami T,Nishimura S.Towards zircon fission-track thermochronology:Reference framework for confined track length measurements[J].Chem Geol,1994,112(1/2):169-178. [42] Kasuya M,Naeser C W.The effect of α-damage on fission-track annealing in zircon[J].Int J Radiat Applicat Instrumentat Part D Nucl Tracks Radiat Meas,1988,14(4):477-480. [43] Garver J I,Kamp P J J.Integration of zircon color and zircon fission-track zonation patterns in orogenic belts:Application to the Southern Alps,New Zealand[J].Tectonophysics,2002,349(1/2/3/4):203-219. [44] Yuan W M,Mo X X,Zhang A K,et al.Fission track thermochronology evidence for multiple periods of mineralization in the Wulonggou gold deposits,eastern Kunlun Mountains,Qinghai Pro-vince[J].J Earth Sci,2013,24(4):471-478. [45] Feng Y L,Yuan W M,Tian Y T,et al.Preservation and exhumation history of the harizha-halongxiuma mining area in the East Kunlun Range,northeastern Tibetan Plateau,China[J].Ore Geol Rev,2017,90:1018-1031. [46] 袁万明,杨志强,张招崇,等.安徽省黄山山体的隆升与剥露[J].中国科学:地球科学,2011,41(10):1435-1443. Yuan W M,Yang Z Q,Zhang Z C,et al.The uplifting and denudation of main Huangshan Mountains,Anhui Province,China[J].Sci China Earth Sci,2011,41(10):1435-1443. [47] Yuan W M,Carter A,Dong J Q,et al.Mesozoic-Tertiary exhumation history of the Altai Mountains,northern Xinjiang,China:New constraints from apatite fission track data[J].Tectonophy-sics,2006,412(3/4):183-193. [48] Yang P,Wu G H,Ren Z L,et al.Tectono-thermal evolution of Cambrian-Ordovician source rocks and implications for hydrocarbon generation in the eastern Tarim Basin,NW China[J].J Asian Earth Sci,2020,194:104267. [49] 邱楠生,杨海波,王绪龙.准噶尔盆地构造-热演化特征[J].地质科学,2002,37(4):423-429. Qiu N S,Yang H B,Wang X L,et al.Tectono-thermal evolution in the Junggar Basin[J].Chin J Geol,2002,37(4):423-429. [50] Green P F,Japsen P.Burial and exhumation history of the Jameson Land Basin,East Greenland,estimated from thermochronological data from the Blokelv-1 core[J].Geol Survey Denmark Greenland Bull,2018,42:133-147. [51] Tagami T.Application of fission-track thermochronology to understand fault zones[M]//Malusà M,Fitzgerald P.Fission-Track Thermochronology and its Application to Geology.Cham:Springer,2019:221-233. [52] Liu L P,Li Z X,Danišík M,et al.Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane:Implications for continental collision and lithospheric thinning[J].Tectonophysics,2017,712/713:10-29. [53] Schwartz S,Gautheron C,Audin L,et al.Foreland exhumation controlled by crustal thickening in the Western Alps[J].Geology,2017,45(2):139-142. [54] Song Y,Ren J Y,Liu K Y,et al.Post-rift anomalous thermal flux in the Songliao Basin,NE China,as revealed from fission track thermochronology and tectonic analysis[J].Palaeogeogr Palaeoclimatol Palaeoecol,2018,508:148-165. [55] Jian X,Guan P,Zhang W,et al.Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau:Detrital apatite fission track evidence from northern Qaidam basin[J].Gondwana Res,2018,60:94-104. [56] Wang X X,Deng L Z,Zattin M,et al.Palaeogene growth of the northeastern Tibetan Plateau:Detrital fission track and sedimentary analysis of the Lanzhou basin,NW China[J].J Asian Earth Sci,2017,147:322-331. [57] 陈夷,杜治利,康志宏,等.阿尔金山前下-中侏罗统页岩气成藏地质条件分析[J].中国地质调查,2019,6(4):40-50. Chen Y,Du Z L,Kang Z H,et al.Analysis on geological conditions of shale gas accumulation in Lower-Middle Jurassic strata of Southern Altyn Tagh[J].Geol Survey China,2019,6(4):40-50. |
[1] |
ZHOU Peng, RONG Feng, ZHOU Lianhe, LIU Gongxi, FAN Yuan, Wan Zhongyan, NIMA Luozhuo. Zircon U-Pb age and geochemical characteristics of the volcanic rocks in the Dianzhong Formation of the Geda area in the middle of the Gangdise[J]. , 2022, 9(3): 76-86. |
[2] |
HAO Shuqing, JIA Shiying, RONG Xiuwei. Geochronology, geochemistry and geological significance of the Wulan composite pluton in the southern Xing'an block[J]. , 2022, 9(3): 40-51. |
[3] |
LI Jiao, WANG Gao, LIU Xiang, WANG Zhe, FENG Jun. Isotopic chronological characteristics and significance of intermediate-acid magmatic rocks in Yamansu area[J]. , 2022, 9(1): 54-63. |
[4] |
HU Lin, XU Lin, XIAO Jin, XU Gang, LUO Shaoqiang. Chronology, geochemical characteristics and prospecting significance of the granite porphyry in Cuojie area of Middle Gangdise in Tibet[J]. , 2021, 8(5): 53-63. |
[5] |
GUO Feng, WANG Panxi, BIAN Xiaodong, FENG Naiqi. Geochronological and geochemical characteristics and geological significance of the monzogranite in Xiarihamu area of East Kunlun[J]. , 2020, 7(6): 51-60. |
[6] |
LUO Shaoqiang, XU Lin, TANG Hua, XIAO Jin, HU Lin. Hydrochemical and isotopic characteristics of Chazi geothermal field in Shigatse in Tibet[J]. , 2020, 7(5): 10-15. |
|
|
|
|