|
|
Remote sensing investigation and development distribution regularity of collapse and landslide geological hazard potentials along National Highway 219 |
LIU Wen1, WANG Meng1, WANG Peng2, LUO Feng2, HE Zhijie2, YU Tianbin1 |
1. Sichuan Institute of Comprehensive Geological Survey (Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province), Sichuan Chengdu 610081,China; 2. China Railway First Survey and Design Institute Group Co. Ltd., Shanxi Xi'an 710043, China |
|
|
Abstract National Highway 219 starts from Yecheng County of Kashgar Area in Xinjiang in the north and ends at Lazi County of Shigatse City in Tibet in the south. The terrain conditions along National Highway 219 are complex, and the climate is harsh, with sparse population. The field survey is difficult to carry out and the remote sensing technology is one of the indispensable means for studying geohazard potentials in this area. The remote sensing interpretation signs of collapse-landslide geohazard potentials are established according to the hue, shape, texture and shadow characteristics of remote sensing images. A total of 126 collapse and landslide geohazard potentials were identified along National Highway 219, including 39 rock landslide potentials, 6 soil landslide potentials and 81 rock collapse potentials. Based on the characteristics of slope angle, rock (soil) type, geological structure and slope structure, the authors analyzed the influencing factors and spatial distribution of couapse and landslide geohazard potentials to divide four concentrated distribution areas, namely Saga concentrated distribution area (I), Suode-Tangre concentrated distribution area (II), Risong-Duoma concentrated distribution area (III) and West Kunlun concentrated distribution area (IV). The collapse-landslide geohazard potentials on the upper position of the slope have the characteristics of high-locality chain disasters, and these geohazard potentials have characteristics of strong concealment, long runout and strong destructiveness, and we should pay more attention to the study of such disasters. This research could provide some references for disaster prevention, mitigation and important engineering construction planning along National Highway 219.
|
Received: 04 February 2023
|
|
|
|
|
[1] 邵芸,张茗,谢酬.地质灾害遥感综合监测现状与展望[J].地质与资源,2022,31(3):381-394. Shao Y,Zhang M,Xie C.Present situation and prospect of comprehensive monitoring in geological hazard by remote sensing[J].Geology and Resources,2022,31(3):381-394. [2] 葛大庆,戴可人,郭兆成,等.重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J].武汉大学学报·信息科学版,2019,44(7):949-956. Ge D Q,Dai K R,Guo Z C,et al.Early Identification of serious geological hazards with integrated remote sensing technologies:thoughts and recommendations[J].Geomatics and Information Science of Wuhan University,2019,44(7):949-956. [3] 王治华. 遥感技术在我国水电建设前期工作中的应用[J].国土资源遥感,1995,7(3):1-8. Wang Z H.The application of remote sensing technique to the hydro-electric construction of earlier stage in China[J].Remote Sensing for Land & Resources,1995,7(3):1-8. [4] 邓辉,巨能攀,向喜琼.高分辨率卫星遥感数据在白衣庵滑坡调查研究中的应用[J].地球与环境,2005,33(4):92-96. Deng H,Ju N P,Xiang X Q.Application of fine resolution satellite remote sensing images in Baiyi'an Landslide research[J].Earth and Environment,2005,33(4):92-96. [5] 殷跃平,成余粮,王军,等.汶川地震触发大光包巨型滑坡遥感研究[J].工程地质学报,2011,19(5):674-684. Yin Y P,Cheng Y L,Wang J,et al.Remote sensing research on Daguangbao gigantic rock-slide triggered by Wenchuan Earth-quake[J].Journal of Engineering Geology,2011,19(5):674-684. [6] 彭双麒,许强,郑光,等.碎屑流堆积物粒度分布与运动特性的关系——以贵州纳雍普洒村崩塌为例[J].水文地质工程地质,2018,45(4):129-136. Peng S Q,Xu Q,Zheng G,et al.Relationship between particle size distribution and movement characteristics of rock avalanche deposits:A case study of the Pusa village rock avalanche in Nayong of Guizhou[J].Hydrogeology & Engineering Geology,2018,45(4):129-136. [7] 李小玲,胡才源,孙全福,等.无人机遥感在高山峡谷区崩塌地质调查中的应用[J].地理空间信息,2021,19(1):78-81,124. Li X L,Hu C Y,Sun Q F,et al.Application of UAV remote sensing in geological survey of collapses in alpine canyon region[J].Geospatial Information,2021,19(1):78-81,124. [8] Ye X,Kaufmann H,Guo X F.Landslide monitoring in the three gorges area using D-INSAR and corner reflectors[J].Photogrammetric Engineering & Remote Sensing,2004,70(10):1167-1172. [9] Chen Q,Cheng H Q,Yang Y H,et al.Quantification of mass wasting volume associated with the giant landslide Daguangbao induced by the 2008 Wenchuan earthquake from persistent scatterer InSAR[J].Remote Sensing of Environment,2014,152:125-135. [10] Sun Q,Hu J,Zhang L,et al.Towards slow-moving landslide monitoring by integrating multi-sensor InSAR time series datasets:the Zhouqu case study,China[J].Remote Sensing,2016,8(11):908. [11] 张毅. 基于InSAR技术的地表变形监测与滑坡早期识别研究——以白龙江流域中游为例[D].兰州:兰州大学,2018. Zhang Y.Detecting Ground Deformation and Investigating Landslides Using InSAR Technique:Taking Middle Reach of Bailong River Basin as An Example[D].Lanzhou:Lanzhou University,2018. [12] 张亚迪,李煜东,董杰,等.时序InSAR技术探测芒康地区滑坡灾害隐患[J].遥感学报,2019,23(5):987-996. Zhang Y D,Li Y D,Dong J,et al.Landslide hazard detection in Markam with time-series InSAR analyses[J].Journal of Remote Sensing,2019,23(5):987-996. [13] 梁京涛,赵聪,马志刚.多源遥感技术在地质灾害早期识别应用中的问题探讨——以西南山区为例[J].中国地质调查,2022,9(4):92-101. Liang J T,Zhao C,Ma Z G.Application discussion on early identification of geohazards based on multi-source remote sensing technology:A case study on mountainous areas of southwestern China[J].Geological Survey of China,2022,9(4):92-101. [14] 唐尧,王立娟,廖军,等.基于InSAR技术的川西高山峡谷区地质灾害早期识别研究——以小金川河流域为例[J].中国地质调查,2022,9(2):119-128. Tang Y,Wang L J,Liao J,et al.Research on early identification of geological hazards in high mountain and valley areas of western Sichuan Province based on InSAR technology:A case study of Xiaojinchuan River Basin[J].Geological Survey of China,2022,9(2):119-128. [15] 马东涛,崔鹏,杨坤,等.新藏公路(新疆段)沿线道路病害及成因初析[J].自然灾害学报,2003,12(3):93-98. Ma D T,Cui P,Yang K,et al.Road hazards of the segment of Xinjiang-Tibet Highway in Xinjiang and their primary cause analy-sis[J].Journal of Natural Disasters,2003,12(3):93-98. [16] 杨坤,马东涛,崔鹏.新藏公路(新疆境内)沿线道路病害[J].山地学报,2002,20(1):53-58. Yang K,Ma D T,Cui P.The hazards along Xinjiang-Tibet highway in Xinjiang[J].Journal of Mountain Science,2002,20(1):53-58. [17] 潘桂棠,王立全,张万平,等.青藏高原及邻区大地构造图及说明书[M].北京:地质出版社,2013. Pan G T,Wang L Q,Zhang W P,et al.Tectonic Map and Description of Tibet Plateau and its Adjacent Areas[M].Beijing:Geological Publishing House,2013. [18] 杨龙伟. 高位滑坡远程动力成灾机理及减灾措施研究[D].西安:长安大学,2021. Yang L W.Research on Dynamic Disaster Mechanism and Mitigation Measures of the High-locality and Long-runout Lands-lide[D].Xi'an:Chang'an University,2021. [19] 高浩源. 高位滑坡冲击铲刮效应研究[D].西安:长安大学,2021. Gao H Y.Study on Impact and Scraping Effect of High-elevation Landslide[D].Xi'an:Chang'an University,2021. [20] 殷跃平,王文沛,张楠,等.强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J].中国地质,2017,44(5):827-841. Yin Y P,Wang W P,Zhang N,et al.Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:a case study of the Xinmo landslide in Maoxian County,Sichuan Province[J].Geology in China,2017,44(5):827-841. |
[1] |
XU Wei, WANG Zuquan, NI Dexing, TIE Yongbo. Development characteristics and prevention measures of slope debris flow in Nimanong Natural Village of Xietongmen County in Shigatse City[J]. , 2022, 9(4): 56-65. |
[2] |
HUANG Yanqin, LI Weile, XU Zhou, LI Pengfei, TIE Yongbo. Remote sensing identification and susceptibility evaluation of landslide hazards in Wenchuan-Songpan section of National Highway 213[J]. , 2022, 9(4): 121-133. |
[3] |
ZHOU Yingjie, WANG Xiaohong, YAO Weiling, YANG Jinzhong. Remote sensing investigation and environmental impact analysis of tailing ponds in Shandong Province[J]. , 2017, 4(4): 88-92. |
[4] |
LI Xiaomin, LI Dongling, WU Pingsheng, ZHANG Kun, XIN Rongfang, LIU Shiying. Remote sensing investigation progresses for environmental geology of the typical areas in the west of Tianshuihai, West Kunlun[J]. , 2017, 4(3): 57-63. |
[5] |
YAN Yunpeng, LIU Gang, LI Yu, LIU Jianyu, WANG Yifei, Zhang Bowen, HAN Cong. Research achievements on cryosphere investigation and monitoring using remote sensing techniques in the Northwest Border Area from 2013 to 2015[J]. , 2017, 4(3): 51-56. |
[6] |
HAN Ying, ZHANG Hongmin, ZHANG Yongfeng, ZHANG Xin. Distribution regularity,origin and quality division of high arsenic,fluorine and iodine contents in groundwater in Datong Basin[J]. , 2017, 4(1): 57-68. |
|
|
|
|