|
|
Geochemical characteristics and geological significance of Qingtashan rock mass in Qiemo County of Xinjiang |
LI Shaowen1,2, ZHOU Chuanfang1,2, YANG Huaben1,2, WANG Jiuyi1,2, LIANG Zhongkai1,2 |
1. Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Heilongjiang Harbin, 150086, China;
2. Observation and Research Station of Earth Critical Zone in Black Soil of Harbin, Ministry of Natural Resources, Helongjiang Harbin, 150086, China |
|
|
Abstract Qingtashan rock mass is located in the western section of East Kunlun, and the formation age, environment and rock type of the rock mass are still controversial, with low research degree of the physicochemical conditions during the process of rock formation and its source characteristics. On the basis of systematic lithology and petrographic research, the authors in this paper conducted composition analysis on the main rock-forming minerals such as biotites, plagioclases and hornblendes. The physicochemical conditions during the process of rock formation were identified and petrogenesis of the rock was further constrained. This study shows that the lithology of Qingtashan rock mass is tonalites, and the lithology of the dike is quartz-diorites. The Plagioclase feldspar in the rock mass is andesine and labradorite, the biotite is magnesiobiotite, and the hornblende is magnesiohornblende. An anti-zoning band was developed in the plagioclase, which was caused by magma mixing. The crystallization temperature is 684~693 ℃ and the crystallization pressure is (1.86~2.01)×108 Pa, with average value of 1.92×108 Pa. The corresponding crystallization depth is 6.90~7.46 km, with an average of 7.12 km, belonging to the medium-deep formation phase. The oxygen fugitivity during rock mass formation is low, which is between -17.34 and -17.04. The mineral chemical characteristics show that the material source of the biotite in Qingtashan rock mass is calc-alkaline orogenic suite, and its formation is related to the crust-mantle mixed source magmatic. This study could provide references for the evolution of Late Triassic-Early Jurassic magma in this region.
|
Received: 01 March 2023
|
|
|
|
|
[1] 柏道远,贾宝华,孟德保,等.且末县一级电站幅、银石山幅地质调查新成果及主要进展[J].地质通报,2004,23(5):564-569.
Bai D Y,Jia B H,Meng D B,et al.New results and major progress in regional geological survey of the Qiemo County First-Order Power Station and Yinshishan sheets[J].Geological Bulletin of China,2004,23(5):564-569.
[2] 亓鹏. 东昆仑西段青塔山岩体岩石学特征及其成因探讨[D].北京:中国地质大学(北京),2019.
Qi P.Petrological Characteristics and Genesis of the Qingtashan Rock Mass in the Western Segment of the East Kunlun Mountains[D].Beijing:China University of Geosciences (Beijing),2019.
[3] 杨运军,张锋军,杨克俭,等.北祁连奥陶纪抠门子组火山岩特征及构造意义[J].西北地质,2015,48(1):26-36.
Yang Y J,Zhang F J,Yang K J,et al.Characteristics and tectonic significance of the volcanic rock in Ordovician Koumenzi Formation,North Qilian Orogen[J].Northwestern Geology,2015,48(1):26-36.
[4] 邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004:12.
Deng J F,Luo Z H,Su S G,et al.Petrogenesis,Tectonic Environment and Minerlization[M].Beijing:Geology Press,2004:12.
[5] 李秉新. 矾山杂岩体岩石学特征[J].西安工程学院报,2002,24(1):5-11.
Li B X.Characteristics of petrology of Fanshan complex body[J].Journal of Xi'an Engineering University,2002,24(1):5-11.
[6] Moyen J F,Martin H.Forty years of TTG research[J].Lithos,2012,148:312-336.
[7] Martin H,Smithies R H,Rapp R,et al.An overview of adakite,tonalite-trondhjemite-granodiorite (TTG),and sanukitoid:Relationships and some implications for crustal evolution[J].Lithos,2005,79(1/2):1-24.
[8] 殷晓,迟广成,陈英丽,等.电子探针波谱分析在长石鉴定中的应用[J].四川地质学报,2016,36(2):350-352.
Yin X,Chi G C,Chen Y L,et al.The application of electron probe spectrum analysis to feldspar identification[J].Acta Geologica Sichuan,2016,36(2):350-352.
[9] 肖平,刘军.多硅白云母晶体化学式几种方法的讨论——用电子探针数据计算[J].华东地质学院学报,2001,24(1):11-14.
Xiao P,Liu J.Discussion on the methods for calculating the crystal chemical formula of phengite by the date from electron probe[J].Journal of East China Geological Institute,2001,24(1):11-14.
[10] 林文蔚. 岩(矿)石中真实矿物组成的计算及矿物化学成分的初步逼近[J].岩石学报,1987,3(2):37-51.
Lin W W.A calculation method of real mineral assemblages and preliminary approximation of mineral chemical compositions of rocks (ores)[J].Acta Petrologica Sinica,1987,3(2):37-51.
[11] 路远发,李文霞.CIPW标准矿物计算方法与程序设计[J].华南地质,2021,37(3):348-360.
Lu Y F,Li W X.Calculation method and VBA program of CIPW norm minerals[J].South China Geology,2021,37(3):348-360.
[12] 路远发,李文霞.花岗岩类自然矿物岩石化学换算及程序设计[J].华南地质,2021,37(4):445-457.
Lu Y F,Li W X.Petrochemical calculation method and VBA program for natural mineral of granitoids[J].South China Geology,2021,37(4):445-457.
[13] 赛盛勋,赵天明,王中亮,等.玲珑黑云母花岗岩成因:矿物学特征约束[J].岩石学报,2016,32(8):2477-2493.
Sai S X,Zhao T M,Wang Z L,et al.Petrogenesis of Linglong biotite granite:Constraints from mineralogical characteristics[J].Acta Petrologica Sinica,2016,32(8):2477-2493.
[14] 陈克樵,欧阳菲.电子探针定量分析直接测定含铁矿物中二价和三价铁[J].岩矿测试,1992,11(4):306-310.
Chen K Q,Ouyang F.Determination of iron(Ⅱ) and iron(Ⅲ) in iron-bearing minerals by electron probe analysis[J].Rock and Mineral Analysis,1992,11(4):306-310.
[15] Leake B E,Woolley A R,Arps C E S,et al.Nomenclature of amphiboles:report of the subcommittee on amphiboles of the international mineralogical association,commission on new minerals and mineral names[J].American Mineralogist,1997,82(9/10):1019-1037.
[16] 牛之建,刘跃,狄永军.大兴安岭五岔沟地区中生代粗安岩中斜长石环带特征及其地质意义[J].岩石矿物学杂志,2014,33(1):102-108.
Niu Z J,Liu Y,Di Y J.Zoning characteristics of the plagioclase from the Mesozoic trachyandesite in Wuchagou area of the Da Hinggan Mountains and its geological implications[J].Acta Petrologica et Mineralogica,2014,33(1):102-108.
[17] Singer B S,Dungan M A,Layne G D.Textures and Sr,Ba,Mg,Fe,K and Ti compositional profiles in volcanic plagioclase:clues to the dynamics of calc-alkaline magma chambers[J].American Mineralogist,1995,80(7/8):776-798.
[18] 史洪峰,董长春,续琰祺.青海香日德水文站岩体斜长石特征及其地质意义[J].西北地质,2016,49(1):109-120.
Shi H F,Dong C C,Xu Y Q.Features and geological significance of the plagioclases from the intrusive body in Xiangride hydrological station,Qinghai[J].Northwestern Geology,2016,49(1):109-120.
[19] Anderson J L,Smith D R.The effects of temperature and on the Al-in-hornblende barometer[J].American Mineralogist,1995,80(5/6):549-559.
[20] 黎敦朋,肖爱芳,刘文元.福建省侏罗纪—白垩纪花岗岩角闪石-斜长石矿物温压计的地质意义[J].东华理工大学学报:自然科学版,2014,37(4):351-359.
Li D P,Xiao A F,Liu W Y.Implication of amphibole-plagioclase geobarometry of Jurassic-Cretaceous granite,Fujian Province,China[J].Journal of East China Institute of Technology,2014,37(4):351-359.
[21] 贠晓瑞,陈希节,蔡志慧,等.青海共和盆地东北部干热岩岩浆侵位结晶条件及深部结构初探[J].岩石学报,2020,36(10):3171-3191.
Yun X R,Chen X J,Cai Z H,et al.Preliminary study on magmatic emplacement and crystallization conditions and deep structure of hot dry rock in the northeastern Gonghe basin,Qinghai Province[J].Acta Petrologica Sinica,2020,36(10):3171-3191.
[22] 吕志成,段国正,董广华.大兴安岭中南段燕山期三类不同成矿花岗岩中黑云母的化学成分特征及其成岩成矿意义[J].矿物学报,2003,23(2):177-184.
Lü Z C,Duan G Z,Dong G H.Mineral chemistry of biotite from granites associated with different mineralization in three stages of Yanshanina period in the southern-middle parts of the Da Hinggan ling Mountains and its petrogenetic and metallogenic significance[J].Acta Mineralogica Sinica,2003,23(2):177-184.
[23] 王崴平,唐菊兴,应立娟.西藏甲玛铜多金属矿床角岩中黑云母矿物化学特征及地质意义[J].地球学报,2012,33(4):444-458.
Wang W P,Tang J X,Ying L J.Mineral chemical characteristics of biotites from hornfels in the Jiama(Gyama) polymetallic copper deposit of Tibet and their geological significance[J].Acta Geoscientia Sinica,2012,33(4):444-458.
[24] 雷敏,吴才来,秦海鹏,等.安徽铜陵地区虎山岩体矿物成分特征及其锆石U-Pb年代学[J].中国地质,2015,42(5):1274-1292.
Lei M,Wu C L,Qin H P,et al.Mineral composition and zircon U-Pb dating of the Hushan intrusion in Tongling area,Anhui Province[J].Geology in China,2015,42(5):1274-1292.
[25] Uchida E,Endo S,Makino M.Relationship between solidification depth of granitic rocks and formation of hydrothermal ore depo-sits[J].Resource Geology,2007,57(1):47-56.
[26] 桑隆康,马昌前.岩石学[M].2版.北京:地质出版社,2012.
Sang L K,Ma C Q.Petrology[M].2nd ed.Beijing:Geology Press,2012.
[27] 刘行,邹灏,李阳,等.川西新元古代灯杆坪花岗岩成因与岩浆演化:来自斜长石和黑云母矿物学依据[J].现代地质,2020,34(5):1043-1057.
Liu H,Zou H,Li Y,et al.Origin and magmatic evolution of the neoproterozoic Dengganping Granite in Western Sichuan:mineralogical evidence from plagioclase and biotite[J].Geoscience,2020,34(5):1043-1057.
[28] Henry D J,Guidotti C V,Thomson J A.The Ti-saturation surface for low-to-medium pressure metapelitic biotites:Implications for geothermometry and Ti-substitution mechanisms[J].American Mineralogist,2005,90(2-3):316-328.
[29] David R W,Hans P E.Stability of biotite:Experiment,theory,and application[J].American Mineralogist,1965,50(9):1228-1272.
[30] Wones D R.Significance of the assemblage titanite+magnetite+quartz in granitic rocks[J].American Mineralogist,1989,74(7-8):744-749.
[31] 周作侠. 侵入岩的镁铁云母化学成分特征及其地质意义[J].岩石学报,1988(3):63-73.
Zhou Z X.Chemical characteristics of Mafic Mica in Intrusive Rocks and its geological meaning[J].Acta Petrologica Sinica,1988(3):63-73.
[32] Abdel-Rahman A F M.Nature of biotites from alkaline,calc-alkaline,and peraluminous magmas[J].Journal of Petrology,1994,35(2):525-541.
[33] Kumar S,Pathak M.Mineralogy and geochemistry of biotites from Proterozoic granitoids of western Arunachal Himalaya:evidence of bimodal granitogeny and tectonic affinity[J].Journal of the Geological Society of India,2010,75(5):715-730. |
|
|
|