Latest active age and model of the faults in Longquanshan fault belt
LIU Liang1,2,3, LIANG Bin2, YAN Zhonglin4, SU Hua1, HE Xuefeng1
1. Department of Natural Resources and Planning of Panzhihua, Panzhihua 617000, China; 2. School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China; 3. Northwest Sichuan Geological Team, Bureau of Geology and Minerals Exploration and Development in Sichuan Province, Mianyang 621010, China; 4. Guizhou Provincial Traffic Planning Exploration andDesign Research Institute Co., Ltd, Chengdu 610000, China
Abstract Longquanshan fault belt belongs to Longmenshan foreland uplift, which is closely related to the uplift evolution of Longmenshan in Qinghai-Tibet Plateau. In order to explore the fault activity model, period and era characteristics of Longquanshan fault belt, some gouge samples were collected at different fault locations of Longquanshan fault belt. SEM was adopted for trace and dissolution micromorphology observation, and ESR was used to test the latest active age. Combined with the regional seismic data, further research on the seismic potential of Longquanshan fault belt was conducted. The results show that the main model of activity in Longquanshan fault belt is stick slip, with creep characteristics. The faults are characterized by multiple periods of activity. The strong acitivity era is the Early Pleistocene-Middle Pleistocene, there were obvious activities in the Late Pleistocene, and there weren’t any obvious activities in the Pliocene. The latest active ages measured by SEM, ESR, TL range from (1210±121) to (110±10.0) ka. The latest active age and activity is characterized with segmen tation, featured with weak activity in the middle segments and strong activity in the north and south segments. Longquanshan fault belt is an active fault belt with certain seismic potential. The earthquakes are distributed zonally along Longquanshan fault belt. However, its activity has been greatly reduced, compared with Longmenshan fault belt in the western part.
[1] 黄祖智,唐荣昌.龙泉山活动断裂带及其潜在地震能力的探讨[J].四川地震,1995(1):18-23. [2] 徐水森,任寰,宋杰.龙泉山断裂带地震活动性浅析[J].四川地震,2006(2):21-27. [3] 王伟涛,贾东,李传友,等.四川龙泉山断裂带变形特征及其活动性初步研究[J].地震地质,2008,30(4):968-979. [4] 申俊峰,申旭辉,曹忠全,等.断层泥石英微形貌特征在断层活动性研究中的意义[J].矿物岩石,2006,27(1):90-96. [5] Sibson R H.Fault rocks and fault mechanisms[J].J Geol Soc,1977,133(3):191-213. [6] Vrolijk P,Van Der Pluijm B A.Clay gouge[J].J Struct Geogl,1999,21(8/9):1039-1048. [7] Ben-Zion Y,Sammis C G.Characterization of fault zones[J].Pure Appl Geophys,2003,160(3):677-715. [8] Kim Y S,Peacock D C P,Sanderson D J.Fault damage zones[J].J Struct Geogl,2004,26(3):503-517. [9] 张秉良,刘桂芬,方仲景,等.云南小湾断层泥石中伊利石矿物特征及其意义[J].地震地质,1994,16(1):89-96. [10] Bos B,Peach C J,Spiers C J.Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution[J].Tectonophysics,2000,327(3/4):173-194. [11] Kanaori Y.A SEM cathodoluminescence study of quartz in mildly deformed granite from the region of the Atotsugawa fault,central Japan[J].Tectonophysics,1986,131(1/2):133-146. [12] Fukuchi T.Direct ESR dating of fault gouge using clay minerals and the assessment of fault activity[J].Eng Geogl,1996,43(2/3):201-211. [13] 金凤英. 从断层泥的显微特征估算断层活动的相对年代[J].电子显微学报,1988(3):36-45. [14] 四川省地质调查院.1:25万成都市幅区域地质调查(修测)[R].成都:四川省地质调查院,2012. [15] 陈社发,邓起东,赵小麟,等.龙门山中段推覆构造带及相关构造的演化历史和变形机制(一)[J].地震地质,1994,16(4):404-412. [16] 刘树根,罗志立,赵锡奎,等.中国西部盆山系统的耦合关系及其动力学模式——以龙门山造山带—川西前陆盆地系统为例[J].地质学报,2003,77(2):177-186. [17] 钱洪,唐荣昌.成都平原的形成与演化[J].四川地震,1997(3):1-7. [18] 李勇,曾允孚.龙门山逆冲推覆作用的地层标识[J].成都理工学院学报,1995,22(2):1-10. [19] 刘亮,梁文武,燕中森,等.龙泉山断裂带隐伏断层氡气特征及其活动性分析[J].沉积与特提斯地质,2019,3(2):45-53. [20] Kanaori Y,Tanaka K,Miyakoshi K.Further studies on the use of quartz grains from fault gouges to establish the age of faulting[J].Eng Geol,1985,21(1/2):175-194. [21] 俞维贤,安晓文,李世成,等.澜沧江流域主要断裂断层泥中石英碎砾表面SEM特征及其断裂活动研究[J].地震研究,2002,25(3):275-280. [22] 杨主恩,胡碧茹,洪汉净.活断层中断层泥的石英碎砾的显微特征及其意义[J].科学通报,1984,29(8):484-486. [23] 刘海明,申俊峰,曹忠权,等.西藏日喀则拉堆—乃东断裂带断层泥石英微形貌特征及其年代学意义[J].矿物岩石地球化学通报,2015,34(1):149-154. [24] Kanaori Y,Miyakoshi K,Kakuta T.Dating fault activity by surface textures of quartz grains from fault gouges[J].Int J Rock Mech Min Sci Geomech,1981,18(5):91. [25] Tanaka K,Shidahara T.Fracturing,crushing and grinding effects on ESR signal of quartz[J].Dating and Dosimetry,1985:239-247. [26] Fukuchi T.Vacancy-associated type ESR centers observed in natural silica and their application to geology[J].Appl Radiat Isotopes,1993,44(1/2):179-184. [27] 张生. 第四纪沉积物常用测年方法及其适用性研究[J].安徽师范大学学报:自然科学版,2001,24(4):383-388. [28] Biswas R H,Toyoda S,Takada M,et al.Multiple approaches to date Japanese marker tephras using optical and ESR methods[J].Quat Geochronol,2015,30:350-356. [29] 张秉良,方仲景,李建国,等.根据断层泥的微观特征探讨断层的活动性[J].地质力学学报,1996,2(2):41-46. [30] 杨主恩,郭芳,李铁明,等.鲜水河断裂西北段的断层泥特征及其地震地质意义[J].地震地质,1999,21(1):21-28. [31] 刘亮,梁斌,燕中林,等,龙泉山断裂带隐伏断层氡气特征及其活动性分析[J].沉积与特提斯地质,2019,39(2):45-53. [32] 四川塞思特科技有限责任公司.成渝铁路区域性地震区划报告[R].成都:四川塞思特科技有限公司,2009. [33] 刘雅丽. 川西地区龙泉山断裂特征及活动性评价[D].成都:成都理工大学,2015. [34] 许志琴,侯立玮,王大可,等.中国西南部松潘—甘孜中生代碰撞型造山带的薄壳构造及前陆逆冲系[J].地球学报,1990,11(1):126-129.