|
|
Application of comprehensive geophysical prospecting method in uplift geothermal field |
ZHAO Jichu1,2, GUO Guoqiang3, WU Qinghua1,2 |
1. No.2 Hydrogeology and Engineering Team of Shandong Geology and Mineral Exploration Bureau, Shandong Dezhou 253072, China; 2. Shandong Engineering Technology Research Center for Geothermal Clean Energy Exploration and Reinjection, Shandong Dezhou 253072, China; 3. Shandong Geophysical and Geochemical Exploration Institute, Shandong Jinan 250000, China |
|
|
Abstract In this paper, the authors have taken Xiangshanwan geothermal field in Xiamen as an example to detect the fault related geothermal water enrichment areas and determine the optimum borehole position based the Geophysical anomaly, combined with the comprehensive geophysical prospecting method of Controlled Source Audio-frequency Magneto Tellurics (CSAMT), joint resistivity profiling and resistivity sounding. The results show that the CSAMT method is efficient and reliable to prospect the spatial distribution characteristics of fault structures in the study area, and it can be used to determine the possible areas of geothermal reservoir. The joint resistivity profiling and resistivity sounding are arranged vertically along the strike of the inferred fault structures to verify the fault structures inferred by the CSAMT method, which would further determine the occurrence of the fault structures in the geothermal water enrichment section and eliminate the multiple interpretational nature of geophysical prospecting method. Finally, the cross region formed by the hanging wall of multiple groups of fault structures is selected as the best borehole target area for geothermal geological drilling. The drilling results show that the single well yield is about 41.76 m3/h, and water temperature is of 52 ℃, with the total soluble solid of 6 183.19 mg/L and the water type of Cl-Na in Xiangshanwan geothermal field.
|
Received: 29 July 2020
|
|
|
|
|
[1] 汪集旸,熊亮萍,庞忠和.中低温对流型地热系统[M].北京:科学出版社,1993:117-132. Wang J Y,Xiong L P,Pang Z H.Low-medium Temperature Geothermal System of Convective Type[M].Beijing:Science Press,1993:117-132. [2] 刘时彬. 地热资源及其开发利用和保护[M].北京:化学工业出版社,2005:14-25. Liu S B.Geothermal Resources and Their Development,Utilization and Protection[M].Beijing:Chemical Industry Press,2005:14-25. [3] 周念沪. 地热资源开发利用实务全书[M].武汉:中国地质大学出版社,2005:52. Zhou N H.A Practical Book on the Development and Utilization of Geothermal Resources[M].Wuhan:China University of Geosciences Press,2005:52. [4] 张英,冯建赟,何治亮,等.地热系统类型划分与主控因素分析[J].地学前缘,2017,24(3):190-198. Zhang Y,Feng J Y,He Z L,et al.Classification of geothermal systems and their formation key factors[J].Earth Sci Front,2017,24(3):190-198. [5] Santos P A.Contribution of magneto-telluric method to geothermal development in El Salvador[C]//Proceedings World Geothermal Congress 2010.Bali,Indonesia:[s.n.],2010. [6] 刘瑞德,黄力军,孟银生.可控源音频大地电磁测深法在地热田勘查中应用效果初探[J].工程地球物理学报,2007,4(2):86-89. Liu R D,Huang L J,Meng Y S.Application of controlled source audio-frequency magnetotellurics to exploration in the geothermal field[J].Chin J Eng Geophys,2007,4(2):86-89. [7] 柳建新,麻昌英,孙丽影,等.可控源音频大地电磁测深法在地热勘探中的应用[J].工程地球物理学报,2014,11(3):319-325. Liu J X,Ma C Y,Sun L Y,et al.The application of CSAMT to the geothermal exploration[J].Chin J Eng Geophys,2014,11(3):319-325. [8] 孙博,李桐林,李鹤,等.可控源音频大地电磁测深法勘查深度研究[J].地球物理学进展,2015,30(2):836-839. Sun B,Li T L,Li H,et al.Study on the sounding of CSAMT[J].Prog Geophys,2015,30(2):836-839. [9] 陈新奇. 直流电法在地热水勘探中应用[J].中国煤炭地质,2006,18(6):50-51,54. Chen X Q.Application of direct current prospecting in geothermal water exploration[J].Coal Geol China,2006,18(6):50-51,54. [10] 曹创华,徐定芳,康方平,等.湖南省岳家桥典型岩溶发育区电性特征及构造格架研究[J].中国地质调查,2018,5(6):68-74. Cao C H,Xu D F,Kang F P,et al.Electrical characteristics and tectonic framework of typical karst zone in Yuejiaqiao area of Hunan Province[J].Geol Surv China,2018,5(6):68-74. [11] 李爽,杨国民,卜志伟.联合剖面法在地下热水勘探中的应用[J].地下水,2015,37(3):94-95. Li S,Yang G M,Bu Z W.Application of composite profiling method in geothermal water exploration[J].Ground Water,2015,37(3):94-95. [12] 中国地质调查局.水文地质手册[M].2版.北京:地质出版社,2012:338. China Geological Survey.Handbook of Hydrogeology[M].2nd ed.Beijing:Geological Publishing House,2012:338. [13] 福建省地质矿产局.福建省区域地质志[M].北京:地质出版社,1985. Fujian Provincial Bureau of Geology and Mineral Resources.Regional Geology of Fujian Province[M].Beijing:Geological Publishing House,1985. [14] 岳来群. 福建东部地穹构造窗基底的主要地质特征[J].福建地质科技情报,1992(2):19-31. Yue L Q.Main geological characteristics of tectonic window basement of Geodome in eastern Fujian[J].Fujian Geological Science and Technology Information,1992(2):19-31. [15] 韦德光,揭育金,黄廷淦.福建省区域地质构造特征[J].中国区域地质,1997,16(2):162-170. Wei D G,Jie Y J,Huang T G.Regional geological structure of Fujian[J].Reg Geol China,1997,16(2):162-170. [16] 卢清地. 福建中生代火山活动的基本特征及构造环境[J].岩石矿物学杂志,2001,20(1):57-68. Lu Q D.Basic characteristics and tectonic setting of Mesozoic volcanic rocks in Fujian Province[J].Acta Petrol Mineral,2001,20(1):57-68. [17] 李根坤,梁诗经.福建省区域地质特征[J].中国区域地质,1987(3):201-210. Li G K,Liang S J.Regional geological characteristics of Fujian province[J].Reg Geol China,1987(3):201-210. [18] 中华人民共和国国土资源部.DZ/T 0280-2015.可控源音频大地电磁法技术规程[S].北京:地质出版社,2016. Ministry of Land and Resources of the People’s Republic of China.DZ/T 0280—2015.Technical regulation for controlled source audio magnetotelluric method[S].Beijing:Geological Press,2015. [19] 中华人民共和国国土资源部.DZ/T 0073—2016.电阻率剖面法技术规程[S].北京:地质出版社,2016. Ministry of Land and Resources of the People’s Republic of China.DZ/T 0073-2016.Technical specifications for resistivity profiling method[S].Beijing:Geological Press,2016. [20] 中华人民共和国地质矿产部.DZ/T 0072—93.电阻率测深法技术规范[S]. Ministry of Geology and Mineral Resources of the People’s Republic of China.DZ/T 0072-93.Technical specifications for resistivity sounding[S]. [21] 刘光亚. 基岩地下水[M].北京:地质出版社,1979:91-92. Liu G Y.Bedrock Groundwater[M].Beijing:Geological Publishing House,1979:91-92. [22] 史猛,康凤新,张杰,等.胶东半岛中低温对流型地热资源赋存机理及找热模型[J].地质论评,2019,65(5):1276-1287. Shi M,Kang F X,Zhang J,et al.Occurrence mechanism and geothermal exploration model of low-medium temperature geothermal systems of convective type in Jiaodong Peninsula[J].Geol Rev,2019,65(5):1276-1287. |
[1] |
ZHANG Jiajia, GU Danian, DU Dongxu. The control effect of magmatic rocks and structures on the gold deposits in Wuhe area of Anhui Province[J]. , 2021, 8(3): 30-39. |
[2] |
GUO Changbao, WANG Baodi, LIU Jiankang, TU Jienan, ZHANG Yongshuang, MA Jianfei, TIE Yongbo, HAN Bing, MA Xin, LIU Feng, LI Xue, MENG Wen, ZHONG Ning, YANG Zhihua, WU Ruian. Main progress and achievements of the geological survey project of Sichuan-Tibet Railway traffic corridor[J]. , 2020, 7(6): 1-12. |
[3] |
ZHANG Jiajia, ZHANG Shunlin, WANG Qingsong, GU Danian. Application of comprehensive geophysical prospecting method in ore prospecting in coverage area: A case study of integrated survey area of Wuhe Gold Mine in Eastern Anhui[J]. , 2020, 7(6): 109-115. |
[4] |
MA Chao, WANG Jingui, ZHANG Xinquan, ZHANG Zixuan, LI Dian, ZHANG Xinzheng, XU Fan. Discussion on the formation and evolutionary history of Shangyi-Longhua regional fault in northern Hebei Province[J]. , 2020, 7(5): 88-94. |
[5] |
LIU Liang, LIANG Bin, YAN Zhonglin, SU Hua, HE Xuefeng. Latest active age and model of the faults in Longquanshan fault belt[J]. , 2020, 7(5): 77-87. |
[6] |
WANG Qingsong, ZHANG Jiajia, ZHANG Shunlin, ZHU Yikun, ZHANG Jinhui, HAO Shuxi. Important discoveries in Wuhe integrated exploration gold mine area in Anhui Province and its geological significance[J]. , 2019, 6(2): 26-33. |
|
|
|
|