|
|
Ecological and geological interaction model: The coupling of supergene geological processes and ecological characteristics |
XIAO Chunlei1, NIE Hongfeng1, LIU Jianyu1, YUAN Guoli2, KANG Yihua2, WANG Anting2, SONG Baofang2 |
1. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China; 2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China; |
|
|
Abstract One of the important contents of the interpretation of the eco-geological interaction model is to visua-lize the weathering and soil-forming process of bedrock and its impact on ecology, including bedrock type, characteristics and migration rules of soil-forming elements in the weathering process, soil structure, and corresponding ecological characteristics. The impact of epigenetic geological processes such as bedrock weathering and soil formation on ecological characteristics is highlighted. In this paper, taking the northern Yinshan of Inner Mongolia, Zhangbei Dam and typical karst area in Southwest China, the authors analyzed the processes and characteristics of bedrock weathering and soil formation under the different supergene geological condition, such as the vertical structure characteristics and material composition of soil, migration characteristics of element, and element enrichment and loss of ecological support layer, and their influence on ecological distribution characteristics. Three eco-geological interaction models are established, including the vegetation distribution and wind erosion bedrock weathering and soil-forming model, artificial forest degradation and weathering alluvial proluvial soil chestnut calcification model in depression basin, and the influence model of soil-forming parent rock on the development degree of rocky desertification. This research helps to reveal the influence of soil-forming process on vegetation distribution and ecological problems, and provides scientific basis for land and space ecological protection and restoration.
|
Received: 27 August 2021
|
|
|
|
|
[1] 聂洪峰,肖春蕾,戴蒙,等.生态地质调查工程进展与主要成果[J].中国地质调查,2021,8(1):1-12. Nie H F,Xiao C L,Dai M,et al.Progresses and main achievements of ecogeological survey project[J].Geol Surv China,2021,8(1):1-12. [2] $\check{C}$arni A,Matevski V,Juvan N,et al.Transition along gradient from warm to mesic temperate forests evaluated by GAMM[J].J Plant Ecol,2016,9(4):421-433. [3] Ding W N,Ree R H,Spicer R A,et al.Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora[J].Science,2020,369(6503):578-581. [4] 杨骏雄,刘丛强,赵志琦,等.不同气候带花岗岩风化过程中稀土元素的地球化学行为[J].矿物学报,2016,36(1):125-137. Yang J X,Liu C Q,Zhao Z Q,et al.Geochemical behavior of rare-earth element during the weathering of granite under different climatic conditions[J].Acta Miner Sin,2016,36(1):125-137. [5] Rahbek C,Borregaard M K,Antonelli A,et al.Building mountain biodiversity:geological and evolutionary processes[J].Science,2019,365(6458):1114-1119. [6] Hulshof C M,Spasojevic M J.The edaphic control of plant diversity[J].Global Ecol Biogeogr,2020,29(10):1634-1650. [7] Spasojevic M J,Damschen E I,Harrison S.Patterns of seed dispersal syndromes on serpentine soils:examining the roles of habitat patchiness,soil infertility and correlated functional traits[J].Plant Ecol Divers,2014,7(3):401-410. [8] Bern C R.Influence of tectonics and atmospheric deposition on nutrient sources to tropical forests of the Osa peninsula,Costa Rica[D].Boulder:University of Colorado at Boulder,2006. [9] 刘鸿雁,蒋子涵,戴景钰,等.岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖[J].中国科学:地球科学,2019,49(12):1974-1981. Liu H Y,Jiang Z H,Dai J Y,et al.Rock crevices determine woody and herbaceous plant cover in the karst critical zone[J].Sci Chin Earth Sci,2019,49(12):1974-1981. [10] 李晓丽,申向东,张雅静.内蒙古阴山北部四子王旗土壤风蚀量的测试分析[J].干旱区地理,2006,29(2):292-296. Li X L,Shen X D,Zhang Y J.Experimental analysis on soil wind-erosion amount in Siziwang Banner North Yinshan Mountain,Inner Mongolia[J].Arid Land Geogr,2006,29(2):292-296. [11] 冯霜,兰登明,赵宏胜,等.阴山北麓木本植物区系研究[J].干旱区研究,2021,38(1):241-246. Feng S,Lan D M,Zhao H S,et al.Floristic analysis of woody plants in the northern foot of Yinshan Mountain[J].Arid Zone Res,2021,38(1):241-246. [12] 王彦阁. 内蒙古阴山北麓农牧交错区土地利用动态分析及预测[J].浙江林业科技,2020,40(4):10-17. Wang Y G.Analysis and prediction of land use types in agro-pastoral ecotone in the northern Yinshan Mountain of Inner Mongolia[J].J Zhejiang for Sci Technol,2020,40(4):10-17. [13] 陈正新,尉恩凤,史世斌,等.内蒙古阴山北麓农牧交错带退化草地复壮对策[J].水土保持研究,2002,9(1):41-45. Chen Z X,Yu E F,Shi S B,et al.Strategies for rejuvenation of degenerated natural grassland within northern agro-grazing ecotone of Yinshan Mountains,Inner Mongolia[J].Res Soil Water Conserv,2002,9(1):41-45. [14] 赵举,妥德宝,赵沛义.阴山北麓防风蚀荒漠化土地利用结构优化策略[J].内蒙古农业科技,2003(5):1-3,9. Zhao J,Tuo D B,Zhao P Y.Strategy of optimum land utilization structure to prevent wind erosion and desertification in North Foot of Yinshan Mountain[J].Inner Mongolia Agric Sci Technol,2003(5):1-3,9. [15] 魏洁,曹建军,李希飞.内蒙古阴山北部丘陵风蚀沙化区林业生态建设与可持续经营对策[J].内蒙古林业调查设计,2003,26(2):14-16,42. Wei J,Cao J J,Li X F.Forestry ecological construction and sustainable management countermeasures in hilly wind-erosion desertization area in North of Yinshan Mountains in Inner Mongolia[J].Inner Mongolia For Invest Des,2003,26(2):14-16,42. [16] Nesbitt H W,Young G M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299(5885):715-717. [17] 陶澍,曹军,李本纲,等.深圳市土壤微量元素含量成因分析[J].土壤学报,2001,38(2):248-255. Tao S,Cao J,Li B G,et al.Distribution pattern of trace elements in soil from Shenzhen area[J].Acta Pedol Sin,2001,38(2):248-255. [18] 郑春雅,许中旗,马长明,等.冀西北坝上地区退化防护林的土壤性质[J].水土保持学报,2016,30(1):203-207. Zheng C Y,Xu Z Q,Ma C M,et al.Soil properties of degraded shelter forests in Bashang plateau of northwestern Hebei Pro-vince[J].J Soil Water Conserv,2016,30(1):203-207. [19] 秦丽娟. 河北坝上地区植树造林防风固沙效果研究[D].石家庄:河北师范大学,2020. Qin L J.Study on the effect of afforestation on windbreak and sand fixation in Bashang district in Hebei Province[D].Shijiazhuang:Hebei Normal University,2020. [20] 高素改. 河北坝上高原湖淖时空演化规律及其驱动力分析[D].石家庄:河北师范大学,2019. Gao S G.An analysis of temporal and spatial evolution laws and driving forces of lakes on Bashang Plateau in Hebei Province[D].Shijiazhuang:Hebei Normal University,2019. [21] 郑春雅,许中旗,马长明,等.冀西北坝上地区杨树防护林退化的影响因素[J].林业资源管理,2018(1):9-15,147. Zheng C Y,Xu Z Q,Ma C M,et al.The factors influencing the poplar shelterbelt degradation in the Bashang Plateau of northwest Hebei Province[J].For Resour Manage,2018(1):9-15,147. [22] 邓启军,李伟,朱庆俊,等.河北坝上张北县玄武岩区蓄水构造特征与找水实践[J].地质通报,2020,39(12):1899-1907. Deng Q J,Li W,Zhu Q J,et al.An analysis of the characteristics of water storage structure and the practice of groundwater exploration in the basalt area of Zhangbei County,Bashang, Hebei Pro-vince[J].Geol Bull China,2020,39(12):1899-1907. [23] 侯贵荣. 坝上张北典型杨树人工林恢复重建技术基础研究[D].北京:北京林业大学,2017. Hou G R.Fundamental study on restoration and reconstruction technique of typical poplar plantation in Zhangbei county,Bashang area[D].Beijing:Beijing Forestry University,2017. [24] 李蕴雄,张卓栋,赵维姗,等.基于原位测定的河北坝上地区小尺度土壤盐分空间变异研究[J].地理与地理信息科学,2014,30(3):99-103. Li Y X,Zhang Z D,Zhao W S,et al.In situ measurement based study on spatial variability of soil salinity at small scale in Ba-shang Region of Hebei Province[J].Geogr Geo-Inf Sci,2014,30(3):99-103. [25] 霍习良,刘树庆,林恩勇,等.河北张北坝上波状高原坡梁地与滩地母质特性比较[J].河北农业大学学报,1995,18(S1):61-64. Huo X L,Liu S Q,Lin E Y,et al.The comparision of parant material between sloping field and shoaly land in Bashang,the North Part of Hebei[J].J Agric Univ Hebei,1995,18(S1):61-64. [26] D’Avello T P,Waltman W J,Waltman S W,et al.Revisiting the pedocal/pedalfer boundary and soil moisture regimes using the javaNewhall simulation model and PRISM data[J].Geoderma,2019,353:125-132. [27] Wu Z Y,Zhang C,Jiang Z C,et al.Subsoil carbonate dissolution rates and their determining factors in a karst drainage basin,SW China[J].Environ Earth Sci,2020,79(22):508. [28] 王超,毕君,王振鹏.河北坝上湖淖湿地植物多样性比较研究[J].河北林业科技,2011(3):18-19,25. Wang C,Bi J,Wang Z P.Comparative study on plant diversity of Hu’nao wetland in Bashang,Hebei Province[J].J Hebei Forest Sci Technol,2011(3):18-19,25. [29] 张欢,曹俊,王化冰,等.张北地区退化杨树防护林的水分利用特征[J].应用生态学报,2018,29(5):1381-1388. Zhang H,Cao J,Wang H B,et al.Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei,Hebei,China[J].Chin J Appl Ecol,2018,29(5):1381-1388. [30] 吴婧,梁巧,童新华.地形因素对广西水稻分布和产量的影响研究[J].陕西理工大学学报:自然科学版,2020,36(6):85-92. Wu J,Liang Q,Tong X H.Study on the influence of topographic factors on the distribution and yield of rice in Guangxi[J].J Shaanxi Univ Technol (Nat Sci Ed),2020,36(6):85-92. [31] 李妍君,陆甲,李艳兰,等.2020年广西气候概况[J].气象研究与应用,2021,42(2):100-104. Li Y J,Lu J,Li Y L,et al.Climate survey of Guangxi in 2020[J].J Meteor Res Appl,2021,42(2):100-104. [32] 黎海龙,胡正旺,杜劲松,等.广西地区岩石圈表层与深部构造之关联性:源于岩石圈密度与磁性结构的解读[J/OL].地球科学:1-12(2021-04-21)[2021-08-20].https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvO-GrUOOqX1coEOzL8AE_tRSPL6mcGoru1t7bFJvSHcOI6hV-AC-4wBkHPt6nEXulnQdcn7Q5g&uniplatform=NZKPT. Li H L,Hu Z W,Du J S,et al.The tectonic relationship between the upper and lower lithosphere in Guangxi area:a comprehension from lithospheric density and magnetic structures[J/OL].Earth Sci:1-12(2021-04-21)[2021-08-20].https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvOGrUO-OqX1coEOzL8AE_tRSPL6mcGoru1t7bFJvSHcOI6hV-AC4wBk-HPt6nEXulnQdcn7Q5g&uniplatform=NZKPT. [33] 刘永贤,熊柳梅,韦彩会,等.广西典型土壤上不同林分的土壤肥力分析与综合评价[J].生态学报,2014,34(18):5229-5233. Liu Y X,Xiong L M,Wei C H,et al.Changes of soil fertility and its comprehensive evaluation under different stands in typical types of soils in Guangxi[J].Acta Ecol Sin,2014,34(18):5229-5233. [34] 廖春贵,熊小菊,胡宝清,等.广西不同岩性植被覆盖变化及对人类活动的响应[J].生态经济,2018,34(6):168-173. Liao C G,Xiong X J,Hu B Q,et al.Variation of vegetation cover on various lithology and its response to human activities in Guangxi[J].Ecol Econ,2018,34(6):168-173. [35] 王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学(D辑),1999,29(5):441-449. Wang S J,Ji H B,Ouyang Z Y,et al.Preliminary study on weathering and pedogenesis of carbonate rock[J].Sci China Ser D:Earth Sci,1999,29(5):441-449. [36] 张连凯,季宏兵,刘秀明,等.越南北部碳酸盐岩上覆红色风化壳主量元素演化特征[J/OL].中国地质:1-20[2021-08-20].http://kns.cnki.net/kcms/detail/11.1167.P.20200206.1527.004.html. Zhang L K,Ji H B,Liu X M,et al.Evolution characteristics of major elements in weathering crust covered on carbonate rocks in Northern Vietnam[J/OL].Geol China:1-20[2021-08-20].http://kns.cnki.net/kcms/detail/11.1167.P.20200206.1527.004.html. [37] 孙承兴,王世杰,周德全,等.碳酸盐岩差异性风化成土特征及其对石漠化形成的影响[J].矿物学报,2002,22(4):308-314. Sun C X,Wang S J,Zhou D Q,et al.Differential weathering and pedogenetic characteristics of carbonate rocksand their effect on the development of rock desertification in karst regions[J].Acta Mineral Sin,2002,22(4):308-314. [38] 吕文丽. 地质环境对滇东南岩溶石漠化发育的影响[D].昆明:昆明理工大学,2014. Lyu W L.Influence of geological environment on the development of karst rocky desertification in southeast Yunnan[D].Kunming:Kunming University of Science and Technology,2014. |
[1] |
ZHANG Lian, WANG Yufei, LUO Jianlin, WANG Zhenli, LEI Tianci. The effects of lithology on the plant community distribution characteristics[J]. , 2021, 8(6): 78-87. |
[2] |
NIE Hongfeng, XIAO Chunlei, REN Weixiang, LIU Jianyu, DAI Meng. Progress and prospect of ecogeological research[J]. , 2021, 8(6): 1-8. |
[3] |
LIU Jianyu, NIE Hongfeng, XIAO Chunlei, SHANG Boxuan, LI Wei, JI Xinyang. Evolution of sandy desertification in North China from 2010 to 2018[J]. , 2021, 8(6): 25-34. |
[4] |
ZHANG Tengjiao, LIU Hong, OUYANG Yuan, ZHANG Jinghua, ZHANG Zhenjie, LI Tong. Ecological environment function of different geological formations: A case study of Xichang area[J]. , 2021, 8(6): 35-49. |
[5] |
OUYANG Yuan, ZHANG Jinghua, LIU Hong, HUANG Hanxiao, ZHANG Tengjiao, HUANG Yong. Classification of soil parent materials in mountain areas of Southwest China based on geological formations: A case study of Daliangshan region[J]. , 2021, 8(6): 50-62. |
[6] |
YU Junbo, ZHOU Chuanfang, LIANG Zhongkai, SUN Yanfeng, JIANG Ping, HU Chen. Spatial distribution patterns of soil chemical elements in important ecological function areas: A case study in Songling area of the Greater Khingan Mountains[J]. , 2021, 8(6): 105-113. |
|
|
|
|