|
|
Remote sensing identification and susceptibility evaluation of landslide hazards in Wenchuan-Songpan section of National Highway 213 |
HUANG Yanqin1,2, LI Weile1, XU Zhou1, LI Pengfei3, TIE Yongbo4 |
1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Sichuan Chengdu 610059, China; 2. Sichuan Emei Mountain 403 Construction Engineering Limited Liability Company, Sichuan Leshan, 614200, China; 3. Guiyang Engineering Corporation Limited of Power China, Guizhou Guiyang 550081, China; 4. Chengdu Geological Survey Center, China Geological Survey, Sichuan Chengdu 610081, China |
|
|
Abstract The Wenchuan-Songpan section of National Highway 213 is located in a mountainous area with strong earthquakes, where the landslide disasters occurred frequently. The traffic in this area is interrupted every year due to landslide disasters, so it is urgent to identify the space distribution of landslide hazards along the line and evaluate the susceptibility. A total of 288 landslide hazards were identified by the optical remote sensing and InSAR integrated remote sensing technology, of which 27 deformation landslide hazards were detected by InSAR. The identified landslide hazards were set as evaluation samples, and 9 influences including elevation, slope, slope aspect, surface curvature, engineering geological rock group, normalized vegetation index (NDVI), distance from road, distance from river, and distance from fault were selected. Besides, the logistic regression model is used to evaluate the susceptibility of landslide hazards in highway corridors. The evaluation results can provide a reference for the prevention and control of landslide disasters in the Wenchuan-Songpan section of National Highway 213.
|
Received: 20 May 2022
|
|
|
|
|
[1] 郝大力,王海燕,刘蕾蕾,等.我国农村公路网合理发展规模研究[J].交通运输研究,2022,8(1):2-11. Hao D L,Wang H Y,Liu L L,et al.Rational development scale of rural highway network in China[J].Transport Res,2022,8(1):2-11. [2] 中新网.四川茂县石大关乡发生山体塌方已致4死7伤[EB/OL].(2014-07-17) [2022-2-10].https://www.chinanews.com.cn/gn/2014/07-17/6398701.shtml. China News Service Website.4 dead and 7 injured in landslide in Shidaguan Township,Maoxian County,Sichuan[EB/OL].(2014-07-17) [2022-2-10].https://www.chinanews.com.cn/gn/2014/07-17/6398701.shtml. [3] 搜狐新闻.突发!国道213汶川段塌方过往车辆需绕行汶川城区[EB/OL].(2018-07-26) [2022-2-10].https://www.sohu.com/a/243448949_100034295. Sohu News.Burst! National Highway 213 Wenchuan Section collapsed vehicles need to detour Wenchuan City[EB/OL].(2018-07-26) [2022-2-10].https://www.sohu.com/a/243448949_100034295. [4] 姚林强. 基于SBAS-InSAR技术的兰州地区地表形变特征分析与地质灾害易发性评价[D].兰州:兰州大学,2021. Yao L Q.Analysing Surface Deformation Characteristics and Eva-luating Susceptibility of Geological Hazards in Lanzhou Area Based on SBAS-InSAR Technology[D].Lanzhou:Lanzhou University,2021. [5] 董继红,马志刚,梁京涛,等.基于时序InSAR技术的滑坡隐患识别对比研究[J/OL].自然资源遥感,2022:1-9.(2022-05-13) [2022-2-15].http://kns.cnki.net/kcms/detail/10.1759.P.20220512.1437.008.html. Dong J H,Ma Z G,Liang J T,et al.Comparative study of landslide hidden danger identification based on time-series InSAR technology[J/OL].Remote Sens Nat Resour,2022:1-9.(2022-05-13) [2022-2-15].http://kns.cnki.net/kcms/detail/10.1759.P.20220512.1437.008.html. [6] 周超. 集成时间序列InSAR技术的滑坡早期识别与预测研究[D].武汉:中国地质大学,2018. Zhou C.Landslide Identification and Prediction with the Application of Time Series InSAR[D].Wuhan:China University of Geosciences,2018. [7] 陶伟,孙岳.基于GIS滑坡地质灾害易发性评价方法综述[J].世界有色金属,2020(21):157-159. Tao W,Sun Y.Review on the evaluation methods of landslide geological hazards based on GIS[J].World Nonferrous Metals,2020(21):157-159. [8] 韩蓓. 基于GIS的岷江上游汶川-叠溪河段滑坡灾害危险性评价[D].成都:成都理工大学,2014. Han B.Landslide Geological Disaster Hazard Assessment in Minjiang River from Wenchuan to Diexi Based on GIS[D].Chengdu:Chengdu University of Technology,2014. [9] 陆会燕,李为乐,许强,等.光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J].武汉大学学报:信息科学版,2019,44(9):1342-1354. Lu H Y,Li W L,Xu Q,et al.Early Detection of landslides in the upstream and downstream areas of the Baige landslide,the Jinsha River based on optical remote sensing and InSAR technolo-gies[J].Geomatics Inf Sci Wuhan Univ,2019,44(9):1342-1354. [10] 许强,陆会燕,李为乐,等.滑坡隐患类型与对应识别方法[J].武汉大学学报:信息科学版,2022,47(3):377-387. Xu Q,Lu H Y,Li W L,et al.Types of potential landslide and corresponding identification technologies[J].Geomatics Inf Sci Wuhan Univ,2022,47(3):377-387. [11] 唐尧,王立娟,廖军,等.基于InSAR技术的川西高山峡谷区地质灾害早期识别研究——以小金川河流域为例[J].中国地质调查,2022,9(2):119-128. Tang Y,Wang L J,Liao J,et al.Research on early identification of geological hazards in high mountain and valley areas of western Sichuan Province based on InSAR technology:A case study of Xiaojinchuan River Basin[J].Geol Surv China,2022,9(2):119-128. [12] Price E J,Sandwell D T.Small-scale deformations associated with the 1992 Landers,California,earthquake mapped by synthe-tic aperture radar interferometry phase gradients[J].J Geophys Res Solid Earth,1998,103(B11):27001-27016. [13] Strozzi T,Wegmuller U,Werner C,et al.Measurement of slow uniform surface displacement with mm/year accuracy[C]//IEEE 2000 International Geoscience and Remote Sensing Symposium.Taking the Pulse of the Planet:The Role of Remote Sensing in Managing the Environment.Honolulu:IEEE,2000:2239-2241. [14] 廖小平,徐风光,蔡旭东,等.香丽高速公路边坡地质灾害发育特征与易发性区划[J].中国地质灾害与防治学报,2021,32(5):121-129. Liao X P,Xu F G,Cai X D,et al.Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J].Chin J Geol Hazard Control,2021,32(5):121-129. [15] Huo A D,Zhang H X,Zhang L,et al.A Sampled method of classification of susceptibility evaluation unit for geological hazards based on GIS[J].Appl Math Inf Sci,2012,6(1S):19S-23S. [16] 李云杰. 藏中联网工程八宿段滑坡灾害风险动态评价[D].成都:成都理工大学,2018. Li Y J.Landslide Risk Dynamic Evaluation of the Basu Segment of the State Grid in Tibet[D].Chengdu:Chengdu University of Technology,2018. [17] 中华人民共和国住房和城乡建设部.GB/T 50218—2014 工程岩体分级标准[S].北京:中国计划出版社,2015. Ministry of Housing and Urban-Rural Development of the People’s Republic of China.GB/T 50218—2014 Standard for Engineering Classification of Rock Mass[S].Beijing:China Planning Press,2015. [18] 吴艳. 基于NDVI像元二分模型的汶川县植被覆盖度估算[J].科学技术创新,2020(25):50-52. Wu Y.Estimation of vegetation coverage in Wenchuan County based on NDVI pixel bipartite model[J].Sci Technol Innovation,2020(25):50-52. [19] 孟兆兴. 基于GIS的川藏公路鲁朗-通麦段滑坡易发性评价[D].邯郸:河北工程大学,2020. Meng Z X.Landslide Susceptibility Evaluation of Lulang-Tongmai Section in Sichuan Tibet Highway Based on GIS[D].Handan:Hebei University of Engineering,2020. [20] 罗路广,裴向军,黄润秋,等.GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J].工程地质学报,2021,29(2):526-535. Luo L G,Pei X J,Huang R Q,et al.Landslide susceptibility assessment in Jiuzhaigou scenic area with GIS based on certainty factor and logistic regression model[J].J Eng Geol,2021,29(2):526-535. [21] 王荐霖. 岷江上游汶川—松潘河段大型滑坡发育特征及危险性评价[D].成都:成都理工大学,2019. Wang J L.Research on Development Characteristics and Hazard Assessment of Large-scale Landslide in Minjiang River from Wenchuan to Songpan[D].Chengdu:Chengdu University of Technology,2019. [22] Meten M,Bhandary N P,Yatabe R.GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina Area in Central Ethiopia[J].J Mt Sci,2015,12(6):1355-1372. [23] Pradhan B.Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia[J].Adv Space Res,2010,45(10):1244-1256. [24] Li W L,Huang R Q,Tang C,et al.Co-seismic landslide inven-tory and susceptibility mapping in the 2008 Wenchuan earthquake disaster area,China[J].J Mt Sci,2013,10(3):339-354. |
|
|
|