|
|
Detection of potential landslides in the section from Kagong County to Rumei Town of Lancang River based on InSAR technology |
CHEN Junyi1, LI Weile1, LU Huiyan1, LI Pengfei2, TIE Yongbo3 |
1. State Key Laboratory of Geohazard prevention and Geoenvironment Protection, Sichuan Chengdu 610059, China; 2. Guiyang Engineering Corporation Limited of Power China, Guizhou Guiyang 550081, China; 3. Chengdu Center of China Geological Survey, Sichuan Chengdu 610081, China |
|
|
Abstract The section from Kagong Gounty to Rumei Town of Lancang River is located in the southeast of Qinghai-Tibet Plateau, with high altitude, deep-cutting valley, unrolling terrain and rich in hydraulic resources. Because of the complex geological structure in this region, there are many high-position geological hazards, which seriously affect the safety of downstream hydropower station construction. The potential landslides within 5 km of the main stream of the Lancang River from Kagong County to Rumei Town section were detected using Stacking-InSAR technology to ensure the safety construction of hydropower stations downstream. The quantity and distribution characteristics of potential landslides in the study area were obtained, and typical potential landslides were selected to analyze their deformation characteristics in time series. The results show: ① A total of 149 potential landslides were detected by ascent and descent orbit images in the study area, with characteristics of free surface development and less vegetation coverage. The landslide surface is full of gully,and shallow collapse occurred in partial areas with serious erosion and loose structure. ② The potential landslides in the study area are mainly rockfalls and landslides, with a total of 54 potential rockfalls and 95 potential landslides. ③ In the study area, most of the potential landslides show multistage sliding trend and are in uniform deformation stage. However, the average annual deformation rate and cumulative deformation in the line of sight are large, indicating that the slope is unstable and poses a great threat to residents along the Lancang River and the construction of hydropower stations downstream.
|
Received: 20 May 2022
|
|
|
|
|
[1] 姚鑫,邓建辉,刘星洪,等.青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析[J].工程科学与技术,2020,52(5):16-37. Yao X,Deng J H,Liu X H,et al.Primary recognition of active landslides and development rule analysis for pan three-river-parallel territory of Tibet Plateau[J].Adv Eng Sci,2020,52(5):16-37. [2] 李雄,马敏杰,任朋勋,等.澜沧江沿江公路苗尾库区六兰路口滑坡机理分析[J].林业建设,2020(3):56-60. Li X,Ma M J,Ren P X,et al.Analysis on landslide mechanism at Liulan intersection of Miaowei reservoir area along the Lancang River[J].For Constr,2020(3):56-60. [3] 王周萼,朱萌.金沙江上游白格滑坡-堰塞湖事件给我们的启示[C]//国际碾压混凝土坝技术新进展与水库大坝高质量建设管理——中国大坝工程学会2019学术年会论文集,2019:885-892. Wang Z E,Zhu M.The enlightenment from the Baige landslide - barrier lake event in the upper reaches of jinsha River[C]//New progress of RCC Dam Technology and High Quality Construction management of Reservoir DAMS - Proceedings of the 2019 Annual Conference of The Chinese Society of Dam Engineering,2019:885-892. [4] 许强,董秀军,李为乐.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报:信息科学版,2019,44(7):957-966. Xu Q,Dong X J,Li W L.Integrated space-air ground early detection,monitoring and warning system for potential catastrophic geohazards[J].Geomatics Inf Sci Wuhan Univ,2019,44(7):957-966. [5] 汤志刚,景佳俊,颜士顺,等.基于InSAR监测数据的石膏矿采空塌陷特征分析——以邳州平台矿和希州矿为例[J].中国地质调查,2020,7(4):112-117. Tang Z G,Jing J J,Yan S S,et al.Analysis of gob collapse characteristics in gypsum mine based on InSAR monitoring data-a case study of Pizhou Pingtai and Xizhou mine[J].Geol Surv China,2020,7(4):112-117. [6] 戴可人. 融合新一代卫星SAR数据的地形与形变信息提取模型与方法[D].成都:西南交通大学,2017. Dai K R.Integration of New Generation SAR Data for Extracting the Earth’s Surface Topography and Displacement:Methodology and Modelling[D].Chengdu:Southwest Jiaotong University,2017. [7] Ferretti A,Prati C,Rocca F.Permanent scatterers in SAR interfero-metry[J].IEEE Trans Geosci Remote Sens,2001,39(1):8-20. [8] Berardino P,Fornaro G,Lanari R,et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Trans Geosci Remote Sens,2002,40(11):2375-2383. [9] Dai K R,Liu G X,Li Z H,et al.Monitoring highway stability in permafrost regions with X-band temporary scatterers stacking InSAR[J].Sensors,2018,18(6):1876. [10] 刘国祥,陈强,罗小军,等.InSAR原理与应用[M].北京:科学出版社,2019. Liu G X,Chen Q,Luo X J,et al.Principle and Application of InSAR[M].Beijing:Science Press,2019. [11] 陆会燕,李为乐,许强,等.光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J].武汉大学学报:信息科学版,2019,44(9):1342-1354. Lu H Y,Li W L,Xu Q,et al.Early detection of landslides in the upstream and downstream areas of the Baige Landslide,the Jinsha River based on optical remote sensing and InSAR technolo-gies[J].Geomatics Inf Sci Wuhan Univ,2019,44(9):1342-1354. [12] Dai C,Li W L,Wang D,et al.Active Landslide Detection based on Sentinel-1 Data and InSAR Technology in Zhouqu County,Gansu Province, Northwest China[J].Journal of Earth Science,2021,32(5):1092-1103. [13] 戴可人,铁永波,许强,等.高山峡谷区滑坡灾害隐患InSAR早期识别——以雅砻江中段为例[J].雷达学报,2020,9(3):554-568. Dai K R,Tie Y B,Xu Q,et al.Early identification of potential landslide geohazards in alpine-canyon terrain based on SAR interferometry-a case study of the middle section of Yalong River[J].J Radars,2020,9(3):554-568. [14] 王书霞,张利平,喻笑勇,等.遥感降水产品在澜沧江流域径流模拟中的适用性研究[J].长江流域资源与环境,2019,28(6):1365-1374. Wang S X,Zhang L P,Yu X Y,et al.Application of remote sen-sing precipitation products in runoff simulation over the Lancang River Basin[J].Resour Environ Yangtze Basin,2019,28(6):1365-1374. [15] 张佳佳,田尤,陈龙,等.澜沧江昌都段滑坡发育特征及形成机制[J].地质通报,2021,40(12):2024-2033. Zhang J J,Tian Y,Chen L,et al.Development and formation mechanism of landslides along Changdu section of Lancang River[J].Geol Bull China,2021,40(12):2024-2033. [16] 苏鹏程,韦方强.澜沧江流域滑坡泥石流空间分布与危险性分区[J].资源科学,2014,36(2):273-281. Su P C,Wei F Q.Landslides and debris flow hazards and danger zonation along the Lancang River[J].Resour Sci,2014,36(2):273-281. [17] 谢卓娟,李山有,吕悦军.滇西南地区主要活动断裂的b值空间分布特征[J].地球科学——中国地质大学学报,2015,40(10):1755-1766. Xie Z J,Li S Y,Lü Y J.b Values spatial distribution characteristics of the main active faults in southwestern Yunnan[J].Earth Sci-J China Univ Geosci,2015,40(10):1755-1766. [18] 王欣. 澜沧江中游深切峡谷区工程地质特征及分区评价[D].成都:成都理工大学,2020. Wang X.Engineering Geological Characteristics and Zoning Evalu-ation of the Deep-Cut Canyon Area in the Middle Reaches of Lancang River[D].Chengdu:Chengdu University of Technology,2020. [19] 史岩. 如美电站左岸坝肩岩体结构特征分析及岩体质量评价研究[D].成都:成都理工大学,2017. Shi Y.Structural Characteristics of Foundation Rock and Rock Mass Quality Evaluation of Rumei Hydropower Station On the Left Bank Abutment[D].Chengdu:Chengdu University of Techno-logy,2017. [20] 杨金明,刘志辉.Sentinel-1卫星数据产品应用探讨[J].地理空间信息,2016,14(12):18-20. Yang J M,Liu Z H.Application of Sentinel-1 satellite and data products[J].Geospatial Inf,2016,14(12):18-20. [21] 戴可人,张乐乐,宋闯,等.川藏铁路沿线Sentinel-1影像几何畸变与升降轨适宜性定量分析[J].武汉大学学报:信息科学版,2021,46(10):1450-1460. Dai K R,Zhang L L,Song C,et al.Quantitative analysis of sentinel-1 imagery geometric distortion and their suitability along Sichuan-Tibet railway[J].Geomatics Inf Sci Wuhan Univ,2021,46(10):1450-1460. [22] 陆超然. 基于星载InSAR技术的贵州山区地质灾害隐患探测与形变分析[D].武汉:武汉大学,2021. Lu C R.Geological Hazards Detection and Deformation Analysis in Mountainous Areas of Guizhou Based on Space-borne InSAR Technology[D] Wuhan:Wuhan University,2021. [23] 刘斌,葛大庆,王珊珊,等.TOPS和ScanSAR模式InSAR在广域地灾隐患识别中的联合应用[J].武汉大学学报:信息科学版,2020,45(11):1756-1762. Liu B,Ge D Q,Wang S S,et al.Combining application of TOPS and ScanSAR InSAR in Large-Scale geohazards identifica-tion[J].Geomatics Inf Sci Wuhan Univ,2020,45(11):1756-1762. [24] 许强,蒲川豪,赵宽耀,等.延安新区地面沉降时空演化特征时序InSAR监测与分析[J].武汉大学学报:信息科学版,2021,46(7):957-969. Xu Q,Pu C H,Zhao K Y,et al.Time series InSAR monitoring and analysis of spatiotemporal evolution characteristics of land subsi-dence in Yan’an new district[J].Geomatics Inf Sci Wuhan Univ,2021,46(7):957-969. [25] 李为乐,许强,陆会燕,等.大型岩质滑坡形变历史回溯及其启示[J].武汉大学学报:信息科学版,2019,44(7):1043-1053. Li W L,Xu Q,Lu H Y,et al.Tracking the deformation history of large-scale rocky landslides and its enlightenment[J].Geomatics Inf Sci Wuhan Univ,2019,44(7):1043-1053. [26] 董秀军,许强,佘金星,等.九寨沟核心景区多源遥感数据地质灾害解译初探[J].武汉大学学报:信息科学版,2020,45(3):432-441. Dong X J,Xu Q,She J X,et al.Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J].Geomatics Inf Sci Wuhan Univ,2020,45(3):432-441. |
[1] |
LIANG Jingtao, ZHAO Cong, MA Zhigang. Application discussion on early identification of geohazards based on multi-source remote sensing technology: A case study on mountainous areas of southwestern China[J]. , 2022, 9(4): 92-101. |
[2] |
TANG Yao, WANG Lijuan, LIAO Jun, DENG Cong. Research on early identification of geological hazards in high mountain and valley areas of western Sichuan Province based on InSAR technology: A case study of Xiaojinchuan River Basin[J]. , 2022, 9(2): 119-128. |
[3] |
YANG Xiuyuan, FU Jie, HAN Xudong, ZHANG Chao, PAN Shuhua, LI Gang, GUO Yingping, PAN Jianyong. Progress of geological hazards survey in the urban area from Wanzhou to Wushan in the Three Gorges Reservoir[J]. , 2021, 8(1): 97-107. |
[4] |
LIANG Jingtao, TIE Yongbo, ZHAO Cong, ZHANG Su. Technology and method research on the early detection of high-level collapse based on the nap-of-the-object photography[J]. , 2020, 7(5): 107-113. |
[5] |
TANG Zhigang, JING Jiajun, YAN Shishun, PAN Jiubao, LI Mengmeng. Analysis of gob collapse characteristics in gypsum mine based on InSAR monitoring data—A case study of Pizhou Pingtai and Xizhou mine[J]. , 2020, 7(4): 112-117. |
[6] |
TIE Yongbo, XU Yong, ZHANG Yong, WEI Yunjie, YANG Xiuyuan, ZHANG Taili, TAN Jianmin. Main progresses and achievements of geological hazards survey in hilly area of southern China[J]. , 2020, 7(2): 1-12. |
|
|
|
|