|
|
Study on hydraulic mechanism of loose accumulation in post-earthquake slope |
YANG Tao1,2, LI Mingli3, SUN Dong1,2, CHANG Ming3, YANG Zongji4 |
1. Sichuan Huadi Construction Engineering Co., Ltd., Sichuan Chengdu 610081, China; 2. College of Environment and Civil Engineering, Chengdu University of Technology, Sichuan Chengdu 610081, China; 3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology, Sichuan Chengdu 610059,China; 4. Inst. of Mountain Hazards and Environment, Chinese Academy of Sciences, Sichuan Chengdu 610041, China |
|
|
Abstract In order to analyze the mechanical principle and hydraulic mechanism of channel debris flow under strong rainfall after earthquake, the authors take debris flow gully in Yindongzi of Longchi Town in Dujiangyan as a case study to establish the hydraulic models of underground water level change in loose accumulations. The characteristics and laws of ground water level change of loose accumulation in post-earthquake debris flow slope are analyzed according to the percolation theory in hydraulics, and the effects of hydrodynamic pressure and hydrostatic pressure on slope body are quantitatively studied. Through the combination of theoretical analysis, example verification and physical simulation test, a deep understanding of mechanical mechanism, critical condition and mode of start-up of loose source on slope was achieved. The results show that: ①Under the excitation of heavy rainfall, the hydraulic condition deteriorates continuously with the increasing diving level in the slope, which eventually leads to the stability failure of the loose accumulation body on the slope. ②The phreatic level generated by the accumulation body is a comprehensive function of slope area S, steady-state rainfall intensity I, slope geometric parameters (θ、W、H、Z) water conductivity coefficient T and other parameters. Tthe larger and I are, the higher the height of phreatic level H will be; Conversely, under the premise that the rainfall collecting area and steady-state rainfall intensity are determined, the larger T, W and θ are, the lower the phreatic level generated in the slope body will be. ③With the increasing hydrostatic pressure P in slope body, the sliding resistance of accumulation body base will be decreased; As the hydrodynamic pressure Gd inside the slope increase, the sliding force of the slope will increase. ④According to the existence form of residual sliding force, the starting mode of the loose accumulation body on the slope after earthquake can be divided into two types: the sliding mode of the whole slope starting and the traction mode of the disintegration in segments starting. The research results can provide theoretical and technical support for the advance warning of gully debris flow.In For the study of earthquake under the condition of strong rainfall channel debris flow mechanics and hydraulics mechanism, combining with the town of Dujiangyan order of the silver named debris flow gully is analyzed, the construction of slope are underground water level change under the premise of hydraulic model, with the aid of seepage theory of hydraulics, area after the earthquake were analyzed by slope loose accumulation is the characteristics and regularities of the variation of the groundwater level in the body, The effects of hydrodynamic pressure and hydrostatic pressure on slope body are quantitatively studied. Through the combination of theoretical analysis, example verification and physical simulation test,
|
Received: 23 May 2022
|
|
|
|
|
[1] 吕小波,游勇,柳金峰,等.汶川2019年“8·20”群发性泥石流降雨特征与临界雨量分析[J].兰州大学学报:自然科学版,2021,57(6):775-782,doi:10.13885/j.issn.0455-2059.2021.06.009. Lv X B,You Y,Liu J F,et al.Rainfall characteristics and rain threshold of Wenchuan debris flows on August 20,2019[J].J Lanzhou Univ:Nat Sci,2021,57(6):775-782,doi:10.13885/j.issn.0455-2059.2021.06.009. [2] 靳文,张国涛,邹强,等.震后泥石流活跃期的新认识——以四川汶川“8·20”灾害事件为例[J].山地学报,2019,37(5):787-796,doi:10.16089/j.cnki.1008-2786.000469. Jin W,Zhang G T,Zou Q,et al.A new understanding of the activity behavior of post-earthquake debris flow:Taking the “8·20” event in Wenchuan,Sichuan,China as an example[J].Mount Res,2019,37(5):787-796,doi:10.16089/j.cnki.1008-2786.000469. [3] 余斌,杨凌崴,刘清华,等.基于沟床宽度与颗粒粒径的泥石流精细化预报模型[J].地球科学,2020,45(4):1447-1456,doi:10.3799/dqkx.2019.131. Yu B,Yang L W,Liu Q H,et al.A precise prediction model on debris flows caused by runoff mechanism based on channel width and particle size[J].Earth Sci,2020,45(4):1447-1456,doi:10.3799/dqkx.2019.131. [4] 李奋生,李勇,赵国华,等.汶川8.0级地震震后泥石流空间分布和控制因素分析[J].灾害学,2014,29(2):38-41,doi:10.3969/j.issn.1000-811X.2014.02.009. Li F S,Li Y,Zhao G H,et al.Space distribution and control factors of debris flows after Wenchuan M8.0 earthquake[J].J Catastrophol,2014,29(2):38-41,doi:10.3969/j.issn.1000-811X.2014.02.009. [5] 雷发洪,胡凯衡,胡云华,等.汶川地震灾区震后泥石流激发雨量研究[J].灾害学,2014,29(2):199-203,doi:10.3969/j.issn.1000-811X.2014.02.037. Lei F H,Hu K H,Hu Y H,et al.Excitation rainfall of debris flows in the stricken area of Wenchuan earthquake[J].J Catastrophol,2014,29(2):199-203,doi:10.3969/j.issn.1000-811X.2014.02.037. [6] 潘华利,安笑,邓其娟,等.泥石流松散固体物源研究进展与展望[J].科学技术与工程,2020,20(24):9733-9741. Pan H L,An X,Deng Q J,et al.Progress and prospects of research on debris flow solid source[J].Sci Technol Eng,2020,20(24):9733-9741. [7] 吴永,何思明,裴向军,等.震后沟道泥石流启动条件——松散堆积体雨中失稳的水力学机制分析[J].岩土力学,2012,33(10):3043-3050,doi:10.16285/j.rsm.2012.10.015. Wu Y,He S M,Pei X J,et al.Analysis of condition of startup of gully debris flow after earthquake-the hydraulic mechanism of instability of loose deposits in rainfall[J].Rock Soil Mechan,2012,33(10):3043-3050,doi:10.16285/j.rsm.2012.10.015. [8] Ouyang C J,An H C,Zhou S,et al.Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River,China[J].Landslides,2019,16(7):1397-1414,doi:10.1007/s10346-019-01177-9. [9] 胡涛. 汶川震区震后大型泥石流致灾机理及防治对策研究[D].成都:成都理工大学,2017. Hu T.The Research on Formation Mechanism and Mitigation Measures of Large-scale Debris Flow in the Wenchuan Earthquake Area[D].Chengdu:Chengdu University of Technology,2017. [10] Shieh C L,Chen Y S,Tsai Y J,et al.Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan,China[J].Int J Sedim Res,2009,24(2):177-188,doi:10.1016/S1001-6279(09)60025-1. [11] Johnson K A,Sitar N.Hydrologic conditions leading to debris-flow initiation[J].Canad Geotechn J,1990,27(6):789-801. [12] Marchi L,Arattano M,Deganutti A M.Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps)[J].Geomorphology,2002,46(1/2):1-17,doi:10.1016/S0169-555X(01)00162-3. [13] 黄海,石胜伟,杨顺,等.2017年“8·8”九寨沟地震对景区泥石流治理工程影响机制研究[J].岩石力学与工程学报,2020,39(9):1773-1786,doi:10.13722/j.cnki.jrme.2020.0099. Huang H,Shi S W,Yang S,et al.Study on the damage of the August 8,2017 Jiuzhaigou earthquake to debris flow mitigation engineering in the national park[J].Chin J Rock Mechan Eng,2020,39(9):1773-1786,doi:10.13722/j.cnki.jrme.2020.0099. [14] Wen B P,Aydin A.Mechanism of a rainfall-induced slide-debris flow:constraints from microstructure of its slip zone[J].Eng Geol,2005,78(1/2):69-88. [15] 高冰,周健,张姣.泥石流启动过程中水土作用机制的宏细观分析[J].岩石力学与工程学报,2011,30(12):2567-2573. Gao B,Zhou J,Zhang J.Macro-meso analysis of water-soil interaction mechanism of debris flow starting process[J].Chin J Rock Mechan Eng,2011,30(12):2567-2573. [16] 朱颖彦,崔鹏,陈晓晴.泥石流堆积体边坡失稳机理的试验与稳定性分析[J].岩石力学与工程学报,2005,24(21):3927-3934. Zhu Y Y,Cui P,Chen X Q.Experiment on mechanism of slope failure of debris flow fan and stability analysis[J].Chin J Rock Mechan Eng,2005,24(21):3927-3934. [17] 游勇,柳金峰,欧国强.泥石流常用排导槽水力条件的比较[J].岩石力学与工程学报,2006,25(S1):2820-2825. You Y,Liu J F,Ou G Q.Comparison of hydraulic conditions among usual debris flow drainage canal[J].Chin J Rock Mechan Eng,2006,25(S1):2820-2825. [18] Cui P.Study on conditions and mechanisms of debris flow initiation by means of experiment[J].Chin Sci Bull,1992,37(9):759-763. [19] 杨顺,欧国强,王钧,等.恒定渗流作用下泥石流起动过程冲刷试验分析[J].岩土力学,2014,35(12):3489-3495,doi:10.16285/j.rsm.2014.12.019. Yang S,Ou G Q,Wang J,et al.Experimental analysis of scouring of debris flow initiation process under steady seepage condi-tion[J].Rock Soil Mechan,2014,35(12):3489-3495,doi:10.16285/j.rsm.2014.12.019. [20] Guo C X,Cui Y F.Pore structure characteristics of debris flow source material in the Wenchuan earthquake area[J].Eng Geol,2020,267:105499,doi:10.1016/j.enggeo.2020.105499. [21] Cui Y F,Zhou X J,Guo C X.Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall[J].J Mount Sci,2017,14(3):417-431,doi:10.1007/s11629-016-4303-x. [22] Yang Z J,Cai H,Shao W,et al.Clarifying the hydrological mechanisms and thresholds for rainfall-induced landslide:in situ monitoring of big data to unsaturated slope stability analysis[J].Bull Eng Geol Environ,2019,78(4):2139-2150,doi:10.1007/s10064-018-1295-5. [23] 徐辉,张少杰,黎力,等.基于水土耦合物理机制的区域滑坡概率预报技术研究[J].灾害学,2019,34(4):86-91,doi:10.3969/j.issn.1000-811X.2019.04.016. Xu H,Zhang S J,Li L,et al.Research on physics-based probabilistic forecasting technology of regional landslide[J].J Catastrophol,2019,34(4):86-91,doi:10.3969/j.issn.1000-811X.2019.04.016. [24] 龚凌枫,唐川,李宁,等.急陡沟道物源起动模式及水土耦合破坏机制分析[J].地球科学进展,2018,33(8):842-851,doi:10.11867/j.Issn.1001-8166.2018.08.0842. Gong L F,Tang C,Li N,et al.Source inition pattern and coupling mechanism of granular deposit and seepage in steep longitudinal gully,Wenchuan[J].Adv Earth Sci,2018,33(8):842-851,doi:10.11867/j.Issn.1001-8166.2018.08.0842. [25] 杨宗佶,王礼勇,石莉莉,等.降雨滑坡多指标监测预警方法研究[J].岩石力学与工程学报,2020,39(2):272-285,doi:10.13722/j.cnki.jrme.2019.0354. Yang Z J,Wang L Y,Shi L L,et al.Research of monitoring and early warning methods for rainfall-induced landslides based on multivariate thresholds[J].Chin J Rock Mechan Eng,2020,39(2):272-285,doi:10.13722/j.cnki.jrme.2019.0354. [26] 赵高文,王萌,杨宗佶,等.震后泥石流沟内滑坡堰塞坝的侵蚀特征分析——以银洞子堰塞坝为例[J].工程科学与技术,2019,51(5):68-77,doi:10.15961/j.jsuese.201800571. Zhao G W,Wang M,Yang Z J,et al.Eroding characteristics of landslide dams in debris flow gullies after earthquakes:A case study of Yindongzi Landslide dam[J].Adv Eng Sci,2019,51(5):68-77,doi:10.15961/j.jsuese.201800571. |
[1] |
TANG Yao, WANG Lijuan, ZHAO Juan, ZHANG Chengxin. Application of remote sensing technology in emergency rescue decision about “6·17” Danba River debris flow disaster chain[J]. , 2020, 7(5): 114-122. |
[2] |
TIE Yongbo, XU Ruge, LIU Hong, WANG Jiazhu, BA Renji, XIANG Anping, YANG Jian, OUYANG Yuan, ZHANG Yu, WANG Hong. Study on the characteristics and formation mechanism of the typical post-fire debris flow in Lushan area of Xichang City: A case study of 3# branch on the left bank of Xiangshuigou[J]. , 2020, 7(3): 82-88. |
[3] |
YANG Shun, HUANG Hai, TIAN You, XIE Zhongsheng. Land utilization modes of debris flow disaster areas in the upper reaches of Fujiang River[J]. , 2019, 6(5): 124-130. |
|
|
|
|