|
|
New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China |
WANG Denghong1, WANG Chenghui1, SUN Yan1, LI Jiankang1, LIU Shanbao1, RAO Kuiyuan2 |
1.Key Laboratory of Metallogeny and Mineral Resource Assessment, Ministry of Land and Resources; Institute of Mineral Resource, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. No.282 Geological Party, Sichuan Bureau of Geology for Nuclear Industry, Deyang 618000, China |
|
|
Abstract Lithium, beryllium and tantalum are the most important rare metals currently, especially with the increasing demand of emerging industries on rare metals. Moreover, this phenomenon has led the prospecting work to make a series of new progresses. The study of lithium and other rare metals mineralization mechanism is not thorough, and there is still a series of debate around this study. Based on many years of practice, this paper put forward a new understanding of “multi-cycle, deep circulation, integration of internal and external” mechanism for the mineralization of lithium. In addition, the “five levels + basement” exploration model was expanded, and the prospecting work in the Keeryin pegmatite ore field, in the Jiajika pegmatite ore in western Sichuan, in the Mufushan-Jiuling ore district in the Hunan-Hubei-Jiangxi border area, and in the central orogenic belt of the Qinba Mountain, was guided based on the new understanding. New progresses have been made in the program of looking for spodumene deposies of pegmatite type, amblygonite deposits of granite-type and beryllium deposit of strata-bound hydrothermal type, pointing out a new direction and opening a new window for prospecting rare metal deposits in China.
|
Received: 25 September 2017
|
|
|
|
|
[1] 刘丽君,王登红,刘喜方,等.国内外锂矿主要类型、分布特点及勘查开发现状[J].中国地质,2017,44(2):263-278.
[2] 王登红,刘丽君,侯江龙,等.初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J].地学前缘,2017,24(5):1-7.
[3] 王登红,王瑞江,付小方,等.对能源金属矿产资源基地调查评价基本问题的探讨——以四川甲基卡大型锂矿基地为例[J].地球学报,2016,37(4):471-480.
[4] Černý P,Ercit T S.The classification of granitic pegmatites revisited[J].Can Mineral,2005,43(6):2005-2026.
[5] Linnen R L,Van Lichtervelde M, Černý P.Granitic pegmatites as sources of strategic metals[J].Elements,2012,8(4):275-280.
[6] Dill H G.Pegmatites and aplites:Their genetic and applied ore geology[J].Ore Geol Rev,2015,69:417-561.
[7] London D.Pegmatites[M].[s.l.]:The Canadian Mineralogist,Special Publication 2008,10:363.
[8] Deveaud S,Millot R,Villaros A.The genesis of LCT-type granitic pegmatites,as illustrated by lithium isotopes in micas[J].Chem Geol,2015,411:97-111.
[9] Simmons W B,Foord E E,Falster A U,et al.Evidence for an anatectic origin of granitic pegmatites,western Maine,USA[C]//Geological Society of America Programs with Abstracts 27.[s.l.]:Geological Society of America,1995:411.
[10] Simmons W B S,Webber K L.Pegmatite genesis:State of the art[J].Eur J Mineral,2008,20(4):421-438.
[11] Martins T,Roda-Robles E,Lima A,et al.Geochemistry and evolution of micas in the Barroso-Alvão pegmatite field,northern Portugal[J].Can Mineral,2012,50(4):1117-1129.
[12] Melleton J,Gloaguen E,Frei D,et al.How are the emplacement of rare-element pegmatites,regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif,Czech Republic?[J].Can Mineral,2012,50(6):1751-1773.
[13] London D.Reply to Thomas and Davidson on “a petrologic assessment of internal zonation in granitic pegmatites”(London,2014a)[J].Lithos,2015,212/213/214/215:469-484.
[14] Thomas R,Davidson P.Comment on “A petrologic assessment of internal zonation in granitic pegmatites” by David London(2014)[J].Lithos,2015,212/213/214/215:462-468.
[15] Teng F Z,McDonough W F,Rudnick R L,et al.Lithium isotopic systematics of granites and pegmatites from the Black Hills,South Dakota[J].Am Mineral,2006,91(10):1488-1498.
[16] Teng F Z,McDonough W F,Rudnick R L,et al.Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J].Earth Planet Sci Lett,2006,243(3/4):701-710.
[17] Tomascak P B,Tera F,Helz R T,et al.The absence of lithium isotope fractionation during basalt differentiation:New measurements by multicollector sector ICP-MS[J].Geochim Cosmochim Acta,1999,63(6):907-910.
[18] Maloney J S,Nabelek P I,Sirbescu M L C,et al.Lithium and its isotopes in tourmaline as indicators of the crystallization process in the San Diego County pegmatites,California,USA[J].Eur J Mineral,2008,20(5):905-916.
[19] Barnes E M,Weis D,Groat L A.Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group,NWT,Canada[J].Lithos,2012,132/133:21-36.
[20] Bottomley D J,Katz A,Chan L H,et al.The origin and evolution of Canadian Shield brines:Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton[J].Chem Geol,1999,155(3/4):295-320.
[21] Godfrey L V,Chan L H,Alonso R N,et al.The role of climate in the accumulation of lithium-rich brine in the Central Andes[J].Appl Geochem,2013,38:92-102.
[22] Orberger B,Rojas W,Millot R,et al.Stable isotopes(Li,O,H) combined with brine chemistry:Powerful tracers for Li origins in Salar Deposits from the Puna Region,Argentina[J].Procedia Earth Planet Sci,2015,13:307-311.
[23] Benson T R,Coble M A,Rytuba J J,et al.Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J].Nat Commun,2017,8:270.
[24] 《中国矿产地质志·江西卷》编委会.中国矿产地质志·江西卷[M].北京:地质出版社,2015:659.
[25] 迟清华,鄢明才.应用地球化学元素丰度数据手册[M].北京:地质出版社,2007:1-148.
[26] 王成辉,孙艳,杨岳清,等.江西九岭地区三稀调查发现磷锂铝石等锂、铍、锡、钽矿物[J].中国地质,2017(出版中).
[27] 朱俊亭.秦岭大巴山地区矿产资源和成矿规律[M].西安:西安地图出版社,1992:1-188.
[28] 《中国矿产地质志·陕西卷》编委会.陕西矿产(《中国矿产地质志·陕西卷 普及本》)[M].北京:地质出版社,2017(出版中).
[29] 《中国矿产地质志·钨矿卷》编委会.中国矿产地质志·钨矿卷[M].北京:地质出版社,2017(待出版).
[30] 代鸿章,王登红,王成辉,等.中央造山带秦巴地区发现石英脉型黑钨矿[J].岩矿测试,2017,36(5)(出版中).
[31] 王登红.地幔柱及其成矿作用[M].北京:地质出版社,1998.
[32] 王瑞江,王登红,李建康,等.稀有稀土稀散矿产资源及其开发利用[M].北京:地质出版社,2015. |
|
|
|