|
|
Dynamic monitoring and change cause analysis of Geladandong glacier in Tibet Plateau |
ZHANG Xunxun1,2, ZHAO Yanggang1,2,*, YANG Bin1,2, WU Shuying3,4, DUAN Yanghai1,2, LIU Yu5 |
1. Civil-Military Integration Geological Survey Center, Field Scientific Observation and Research Station of Natural Resources in the Middle Reaches of the Brahmaputra River, Tibet Autonomous Region, Sichuan Chengdu 610036,China; 2. Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Ministry of Natural Resources, Beijing 100055, China; 3. Sichuan Hua Di Building Engineering Co., Ltd., Sichuan Chengdu 610081, China; 4. Chengdu Center of Hydrogeology and Engineering Geology of Sichuan Provincial Geology and Mineral Resources Bureau, Sichuan Chengdu 610081, China; 5. Aerospace Information Research Institute Chinese Academy of Sciences, State Key Laboratory of Remote Sensing Sciences Institute of Remote Sensing Applications, Beijing 100094, China |
|
|
Abstract Geladandong glacier complex is the source of Tuotuo River, the primary source of Yangtze River. It is located in the Tanggula Mountains, which is in the remote interior of Tibet Plateau. The processes and causes of glacier area change are crucial for the sustainable use of water resources and the functioning of the water cycle in the headwater ecosystem of Yangtze River. The random forest method was employed to carry out the interpretation of glacier remote sensing images, and topographic and climatic data were integrated to investigate the underlying drivers of glacier area change. The results are as follows. ① The random forest method is particularly suitable for the automatic interpretation of a large number of consecutive remote sensing images, after the comparative analysis of 7 most commonly used automatic computerized classification methods and the evaluation of their accuracy. ② From 1999 to 2022, the glacier area in the study area exhibited a wavy decreasing trend, with a total decrease of 64.25 km2, representing a 10.22% reduction and a decreasing trend of 2.94 km2/a. ③ The glacier terminus in the study area exhibits a relatively smooth and regular morphology, with a distinct single peak and symmetrical outline. In contrast, the glacier tongue terminus displays a more irregular morphology, with a variable edge and a shape that is evidently influenced by topographic factors. ④ The change of glacier area is significantly influenced by elevation and slope direction. Among climatic factors, temperature is the primary driver of glacier change, exhibiting a negative correlation. This research could provide the scientific basis and data supporting for glacier change characteristics and sustainable use of water resources in the primary source area of Yangtze River.
|
Received: 22 March 2024
|
|
|
|
|
[1] 刘焰. 未来百年全球气候变化分析[J].中国地质调查, 2021,8(3):1-11. Liu Y.Analysis of global climate change in the next one hundred years[J].Geological Survey of China,2021,8(3):1-11. [2] 黄莉,刘晓煌,刘玖芬,等.长时间尺度下自然资源动态综合区划理论与实践研究——以青藏高原为例[J].中国地质调查,2021,8(2):109-117. Huang L,Liu X H,Liu J F,et al.Theories and practice of the comprehensive regionalization of natural resources at a long time scale:A case study of Qinghai-Tibet Plateau[J].Geological Survey of China,2021,8(2):109-117. [3] 何秋乐,匡星星,梁四海,等.1966—2015年长江源冰川融水变化及其对径流的影响——以冬克玛底河流域为例[J].人民长江,2020,51(2):77-85,130. He Q L,Kuang X X,Liang S H,et al.Glacial meltwater variation in Dongkemadi River Basin of Yangtze River source from 1966 to 2015 and its influence on runoff[J].Yangtze River,2020,51(2):77-85,130. [4] Sorg A,Bolch T,Stoffel M,et al.Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J].Nature Climate Change,2012,2(10):725-731. [5] 杨斌,袁祺,谭昌海,等.青藏高原东部拉萨河下游地区大气湍流交换特征研究[J].高原气象,2022,41(1):204-215. Yang B,Yuan Q,Tan C H,et al.Study on the characteristics of atmospheric turbulence exchange in the lower reaches of the Lhasa River in the eastern Qinghai-Xizang Plateau[J].Plateau Meteorology,2022,41(1):204-215. [6] Oerlemans J.Quantifying global warming from the retreat of gla-ciers[J].Science,1994,264(5156):243-245. [7] 张建国,刘玉梅,吕腾腾,等.格拉丹东区域冰川变化研究[J].干旱区资源与环境,2015,29(12):184-189. Zhang J G,Liu Y M,Lv T T,et al.An inventory of glacier changes for the Geladandong Mountain area,China[J].Journal of Arid Land Resources and Environment,2015,29(12):184-189. [8] 吴珊珊,姚治君,姜丽光,等.现代冰川体积变化研究方法综述[J].地球科学进展,2015,30(2):237-246. Wu S S,Yao Z J,Jiang L G,et al.Method review of modern glacier volume change[J].Advances in Earth Science,2015,30(2):237-246. [9] 王宁练,姚檀栋,徐柏青,等.全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J].中国科学院院刊,2019,34(11):1220-1232. Wang N L,Yao T D,Xu B Q,et al.Spatiotemporal pattern,trend,and influence of glacier change in Tibetan Plateau and surroundings under global warming[J].Bulletin of Chinese Academy of Sciences,2019,34(11):1220-1232. [10] 曹泊,王杰,张忱,等.遥感技术在现代冰川变化研究中的应用[J].遥感技术与应用,2011,26(1):52-59. Cao B,Wang J,Zhang C,et al.The remote sensing in research of modern glacier changes[J].Remote Sensing Technology and Application,2011,26(1):52-59. [11] 赵贵宁,张正勇,刘琳,等.基于多源遥感数据的玛纳斯河流域冰川物质平衡变化[J].地理学报,2020,75(1):98-112. Zhao G N,Zhang Z Y,Liu L,et al.Changes of glacier mass balance in Manas river basin based on multi-source remote sensing data[J].Acta Geographica Sinica,2020,75(1):98-112. [12] Racoviteanu A E,Williams M W,Barry R G.Optical remote sensing of glacier characteristics:A review with focus on the Himalaya[J].Sensors,2008,8(5):3355-3383. [13] Paul F.Changes in glacier area in Tyrol,Austria,between 1969 and 1992 derived from Landsat 5 Thematic Mapper and Austrian Glacier Inventory data[J].International Journal of Remote Sen-sing,2002,23(4):787-799. [14] Bindschadler R,Dowdeswell J,Hall D,et al.Glaciological applications with Landsat-7 imagery:early assessments[J].Remote Sensing of Environment,2001,78(1/2):163-179. [15] 周文明,李志伟,李佳,等.1992—2009年格拉丹东冰川及冰前湖面积变化的遥感研究[J].中南大学学报:自然科学版,2014,45(10):3505-3512. Zhou W M,Li Z W,Li J,et al.Variations of glaciers and glacial lake in Geladandong mountain range in 1992—2009 with remote-sensing technology[J].Journal of Central South University (Science and Technology),2014,45(10):3505-3512. [16] Chen J M.Evaluation of vegetation indices and a Modified Simple Ratio for boreal applications[J].Canadian Journal of Remote Sensing,1996,22(3):229-242. [17] 冀琴. 1990—2015年喜马拉雅山冰川变化及其对气候波动的响应[D].兰州:兰州大学,2018. Ji Q.Glacier Variations in Response to Climate Change in the Himalaya During 1990—2015[D].Lanzhou:Lanzhou University,2018. [18] 鲁安新,姚檀栋,刘时银,等.青藏高原各拉丹冬地区冰川变化的遥感监测[J].冰川冻土,2002,24(5):559-562. Lu A X,Yao T D,Liu S Y,et al.Glacier change in the Geladandong area of the Tibetan Plateau monitored by remote sensing[J].Journal of Glaciology and Geocryology,2002,24(5):559-562. [19] 骆剑承,梁怡,周成虎.基于尺度空间的分层聚类方法及其在遥感影像分类中的应用[J].测绘学报,1999,28(4):319-324. Luo J C,Liang Y,Zhou C H.Scale space based hierarchical clustering method and its application to remotely sensed data classification[J].Acta Geodaetica et Cartographica Sinica,1999,28(4):319-324. [20] 刘时银,郭万钦,许君利.中国第二次冰川编目数据集(V1.0) (2006—2011)[EB/OL].国家青藏高原数据中心,(2012).https://doi.org/10.3972/glacier.001.2013.db. Liu S Y,Guo W Q,Xu J L.The second glacier inventory dataset of China (version 1.0) (2006—2011)[EB/OL].National Tibetan Plateau/Third Pole Environment Data Center,(2012).https://doi.org/10.3972/glacier.001.2013.db. [21] 李忠勤,沈永平,王飞腾,等.天山乌鲁木齐河源1号冰川消融对气候变化的响应[J].气候变化研究进展,2007,3(3):132-137. Li Z Q,Shen Y P,Wang F T,et al.Response of melting ice to climate change in the Glacier No.1 at the headwaters of Ürümqi River,Tianshan Mountain[J].Advances in Climate Chance Research,2007,3(3):132-137. [22] 王德旺,何萍,张馨予,等.苏干湖流域冰川、湿地对气候变化的响应研究[J].干旱区资源与环境,2023,37(8):107-116. Wang D W,He P,Zhang X Y,et al.Response of glaciers and wetlands to climate change in Sugan Lake Basin[J].Journal of Arid Land Resources and Environment,2023,37(8):107-116. [23] 李林凤,李开明.石羊河流域冰川变化与地形因子的关系探究[J].冰川冻土,2019,41(5):1026-1035. Li L F,Li K M.Study on the relationship between glacier change and topographic factors in the Shiyang River basin[J].Journal of Glaciology and Geocryology,2019,41(5):1026-1035. [24] Ye Q H,Kang S C,Chen F,et al.Monitoring glacier variations on Geladandong mountain,central Tibetan Plateau,from 1969 to 2002 using remote-sensing and GIS technologies[J].Journal of Glaciology,2006,52(179):537-545. [25] Bolch T,Yao T,Kang S,et al.A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin,Tibet,and glacier changes 1976-2009[J].The Cryosphere,2010,4(3):419-433. [26] 周远刚,赵锐锋,张丽华,等.博格达峰地区冰川和积雪变化遥感监测及影响因素分析[J].干旱区地理,2019,42(6):1395-1403. Zhou Y G,Zhao R F,Zhang L H,et al.Remote sensing monitoring of the change of glacier and snow cover and its influencing factors in Mount Bogda[J].Arid Land Geography,2019,42(6):1395-1403. [27] Zhao J,Shi Y F,Huang Y S,et al.Uncertainties of snow cover extraction caused by the nature of topography and underlying surface[J].Journal of Arid Land,2015,7(3):285-295. [28] 张威,李亚鹏,柴乐,等.1990—2020年间念青唐古拉山中段北坡边坝地区冰川变化及气候响应[J].地理科学进展,2021,40(12):2073-2085. Zhang W,Li Y P,Chai L,et al.Glacier change and response to climate in the northern slope of the middle Nyainqêntanglha Mountains during 1990—2020[J].Progress in Geography,2021,40(12):2073-2085. [29] 刘焕才,刘真玲,秦翔,等.1991—2020年祁连山老虎沟12号冰川能量-物质平衡模拟研究[J].地理科学,2023,43(12):2228-2239. Liu H C,Liu Z L,Qin X,et al.Simulation study on the energy-mass balance of Laohugou Glacier No.12 in the Qilian Mountains from 1991 to 2020[J].Scientia Geographica Sinica,2023,43(12):2228-2239. [30] 肖乐天,吴坤鹏,刘时银,等.1980—2019年藏东南帕隆藏布流域冰川物质平衡模拟[J].冰川冻土,2023,45(6):1829-1839. Xiao L T,Wu K P,Liu S Y,et al.Simulation of mass balance of glaciers in the Parlung Zangbo basin in southeast Tibet from 1980 to 2019[J].Journal of Glaciology and Geocryology,2023,45(6):1829-1839. |
[1] |
LV Kexin, SHI Guangyao, ZHANG Huan, ZHANG Jinlong, LI Qingzhe, ZHANG Pengcheng. Quaternary palynological records and climatic signifiance of S9 borehole in Sanhe City of Hebei Plain[J]. , 2022, 9(1): 64-72. |
[2] |
WANG Guosheng, SUN Tao, ZAN Guosheng, WANG Bang, KONG Xiangji. Roles and suggestions of terrestrial ecosystem carbon sink in achieving carbon emission peak and carbon neutrality in China[J]. , 2021, 8(4): 13-19. |
[3] |
LIU Yan. Analysis of global climate change in the next one hundred years[J]. , 2021, 8(3): 1-11. |
[4] |
WANG Yi, LI Li. Remote sensing monitoring for the oil and gas platform in the South China Sea[J]. , 2021, 8(3): 58-63. |
[5] |
WANG Hao, LI Li, LIU Xue, LI Hao. Remote sensing investigation of mineral resources development environment in Northeastern Xinjiang[J]. , 2018, 5(3): 81-88. |
[6] |
XUE Qing, WU Wei, LI Mingsong, DONG Shuangfa, WANG Bing, FAN Yunxiang. Application of remote sensing technology in mine environment monitoring in Liaoning Province[J]. , 2016, 3(5): 54-59. |
|
|
|
|