|
|
Weathering degree determination of volcanic rocks: A case study of Late Permian ultrabasic rocks and basic basalts in Western Guizhou Province |
LIU Decheng1,2,3, WANG Weidong4,5 |
1. Beijing Geological and Mineral Exploration and Development Group Co., Ltd., Beijing 100050, China; 2. Beijing Institute of Geological Hazard Prevention, Beijing 100120, China; 3. Beijing Jingsheng Engineering Survey Co., Ltd., Beijing, 102206, China; 4. School of Civil Engineering, Central South University, Hunan Changsha 410075, China; 5. MOE Key Laboratory of Engineering Structures of Heavy Haul Railway (Central South University), Hunan Changsha 410075, China |
|
|
Abstract The chemical weathering index, which is sensitive to the response of rock weathering intensity, is an important parameter for quantitatively evaluating the degree of rock weathering. The advantages and limitations of 12 chemical weathering indicators were reviewed in this paper, including the weathering index of Parker (WIP), weathering potential index (WPI), and chemical index of alteration (CIA), which were considered suitable for determining the weathering degree of magmatic rocks in previous studies. The rock oxidation factor Xo(Xo=Fe2O3/(FeO+Fe2O3) was introduced to evaluate the weathering degree of volcanic rocks, and it was also used to evaluate the applicability of 12 chemical weathering indicators for analyzing the weathering of ultrabasic and basic rocks. In the practical application of Late Permian ultrabasic rocks and basic basalts in Western Guizhou Province, the lower limits for the unweathered ultrabasic rocks and basic basalts were Xo≤0.44 and Xo≤0.55. Based on the qualitative analysis results, these two types of rocks were divided into fresh rocks, slightly weathered rocks, moderately weathered rocks, strongly weathered rocks, and completely weathered rocks according to the degree of weathering. The scattered intersection results of Xo and 12 chemical weathering indicators show that BWI, A-FM, and LOI are not only suitable for evaluating the weathering degree of ultrabasic rocks and basic basalts in the early stage of weathering, but also suitable for evaluating the weathering degree of ultrabasic rocks and basic basalts in the middle and late stages of weathering. The other 9 indicators are only sensitive to response of results weathering degree of ultrabasic rocks and basic basalts in the middle and late stages of weathering. This research could provide new ideas and methods for engineering geological investigation and exploration, potential geological hazard evaluation, and prevention and control of geological hazard in ultrabasic and basic basalt rock areas, and provide guidance for the evaluation of rock weathering degree in similar rock areas.
|
Received: 12 April 2023
|
|
|
|
|
[1] 刘成禹,何满潮.对岩石风化程度敏感的化学风化指数研究[J].地球与环境,2011,39(3):349-354. Liu C Y,He M C.Research on the sensitive chemical weathering indices to rock weathering[J].Earth and Environment,2011,39(3):349-354. [2] 魏伟,沈军辉,苗朝,等.风化、蚀变对花岗斑岩物理力学特性影响分析[J].工程地质学报,2012,20(4):599-606. Wei W,Shen J H,Miao Z,et al.Influence analysis of weathering and altering for physical and mechanical characteristics of granite-porphyry[J].Journal of Engineering Geology,2012,20(4):599-606. [3] 代伟,陈建宏,李志江.不同风化程度砂岩力学特性实验研究[J].武汉理工大学学报,2008,30(12):140-142,169. Dai W,Chen J H,Li Z J.Research on mechanical properties about sandstone in different level of weathering[J].Journal of Wuhan University of Technology,2008,30(12):140-142,169. [4] 彭晋. 峨眉山玄武岩结构体风化特征研究[D].昆明:昆明理工大学,2015. Peng J.The Study of Weathering Characteristics of Emeishan Basalt of Rock Block[D].Kunming:Kunming University of Science and Technology,2015. [5] 长江水利委员会长江科学院.GB 50218—1994 工程岩体分级标准[S].北京:中国标准出版社,1995. Yangtze River Water Conservancy Committee Yangtze River Academy of Sciences.GB 50218—1994 Standard for Engineering Classification of Rock Masses[S].Beijing:Standards Press of China,1995. [6] 刘春,白世伟.岩体风化程度两级模糊综合评判研究[J].岩石力学与工程学报,2005,24(2):252-256. Liu C,Bai S W.Fuzzy mathematics method for analysis of the weathering degree of rocks[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(2):252-256. [7] 王晓峰,韩宏韬.岩石风化程度的定量分类[J].工程地质学报,2011,19(S1):11-13. Wang X F,Han H T.Quantitative ciassification of rock weathering degree[J].Journal of Engineering Geology,2011,19(S1):11-13. [8] 邵长云,钟庆华,葛双成,等.利用岩体波速定量划分岩石风化度的试验研究[J].工程勘察,2012,40(3):87-90,95. Shao C Y,Zhong Q H,Ge S C,et al.The research on quantitative dividing rock's efflorescent degree using wave velocity test[J].Geotechnical Investigation & Surveying,2012,40(3):87-90,95. [9] 李学颖,孙光,高涛.长春白垩纪泥岩风化程度的划分方法[J].岩土工程技术,2015,29(6):320-323. Li X Y,Sun G,Gao T.Division method of Changchun cretaceous mudstones weathering degree[J].Geotechnical Engineering Technique,2015,29(6):320-323. [10] 吕游. 工程地质勘察中关于岩石风化程度的识别及判定方法[J].环球人文地理,2017(6):102. Lv Y.Identification of rock weathering degree in engineering geological survey determination method[J].Cultural Geography,2017(6):102. [11] 刘晓波,白广明.一种新的测试坝基岩体风化程度的方法[J].黑龙江水利,2017,3(5):5-8. Liu X B,Bai G M.A new method of testing weathering degree of dam foundation rock mass[J].Heilongjiang Water Resources,2017,3(5):5-8. [12] 李仁杰,纪成亮,刘浩,等.工程物探方法在岩石风化程度判别中的应用[J].山西建筑,2018,44(8):62-63. Li R J,Ji C L,Liu H,et al.The application of the engineering geophysical survey methods to judge the degree of rock weathering[J].Shanxi Architecture,2018,44(8):62-63. [13] 杨全红,褚衍辉,张亚宁.地质雷达在岩石风化程度划分上的应用[J].电力勘测设计,2018(S1):39-42. Yang Q H,Chu Y H,Zhang Y N.Application of geological radar in dividing degree of rock weathering[J].Electric Power Survey & Design,2018(S1):39-42. [14] 董兆祥. 风化岩体及风化带划分的数学地质方法研究[J].长春地质学院学报,1987,17(1):73-80. Dong Z X.Research of mathemayical geology method of weathering rock mass and dividing belt of weathering rock mass[J].Journal of Changchun College of Geology,1987,17(1):73-80. [15] Cao R H,Cao P,Lin H,et al.Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading:Experimental studies and particle mechanics approach[J].Rock Mechanics and Rock Engineering,2016,49(3):763-783. [16] 于恒昌. 基于数字钻探测试技术的岩石力学参数测定方法研究[D].济南:山东大学,2018. Yu H C.Study on Testing Methods of Rock Mechanics Parameters Based on Digital Drilling Testing Technology[D].Ji'nan:Shandong University,2018. [17] 吴宏伟,尚彦军,曲永新,等.香港花岗岩风化分级化学指标体系与风化壳分带[J].工程地质学报,1999,7(2):125-134. Wu H W,Shang Y J,Qu Y X,et al.Chemical weathering indices,classification,and zoning of weathered granitic rock in Hong Kong[J].Journal of Engineering Geology,1999,7(2):125-134. [18] Esaki T,Jiang K.Comprehensive study of the weathered condition of welded tuff from a historic stone bridge in Kagoshima,Japan[J].Engineering Geology,2000,55(1/2):121-130. [19] Topal T.Quantification of weathering depths in slightly weathered tuffs[J].Environmental Geology,2002,42(6):632-641. [20] 胡俊杰,马寅生,吴祎,等.柴达木盆地侏罗纪古气候演变过程:来自化学风化特征的证据[J].高校地质学报,2019,25(4):548-557. Hu J J,Ma Y S,Wu Y,et al.Jurassic palaeoclimate evolution of the Qaidam Basin:evidence from chemical weathering analyses[J].Geological Journal of China Universities,2019,25(4):548-557. [21] 李绪龙,张霞,林春明,等.常用化学风化指标综述:应用与展望[J].高校地质学报,2022,28(1):51-63. Li X L,Zhang X,Lin C M,et al.Overview of the application and prospect of common chemical weathering indices[J].Geological Journal of China Universities,2022,28(1):51-63. [22] Rittmann A.Stable Mineral Assemblages of Igneous Rocks:A Method of Calculation[M].Berlin:Springer,1973. [23] 邱家骧. 火山岩中Fe2O3、FeO的调整与方法[J].地质科技情报,1985,4(2):32-39. Qiu J X.Adjustment and method of Fe2O3 and FeO in volcanic rocks[J].Bulletin of Geological Science and Technology,1985,4(2):32-39. [24] 李明连,蓝恒春.岩浆冷凝成岩阶段的氧逸度与华南热液型铀矿的成矿类型[J].铀矿地质,2014,30(3):168-171,186. Li M L,Lan H C.The oxygen fugacity of magma in condensed diagenesis and the hydrothermal uranium mineralization type in South China[J].Uranium Geology,2014,30(3):168-171,186. [25] 刘德成,陈亚军,伍宏美,等.陆上和水下喷发成因火山岩特征及元素地球化学判别——以新疆三塘湖盆地马朗凹陷上石炭统火山岩为例[J].东北石油大学学报,2021,45(6):41-51,79. Liu D C,Chen Y J,Wu H M,et al.Characteristics and element geochemical discrimination of subaerial and subaqueous volcanic rocks:taking the Upper Carboniferous volcanic rocks of Malang Depression in Santanghu Basin in Xinjiang as an example[J].Journal of Northeast Petroleum University,2021,45(6):41-51,79. [26] 刘德成,陈亚军,伍宏美,等.火山岩陆上与水下喷发沉积环境的地球化学判识方法研究[J].地质科学,2022,57(3):809-834. Liu D C,Chen Y J,Wu H M,et al.Geochemistry discriminance study of subaerial and underwater eruptive depositional environment of volcanic rocks[J].Chinese Journal of Geology,2022,57(3):809-834. [27] Vogt T.Sulitjelmafeltets geologiog petrografi[J].Norges Geologiske Undersokelse,1927,121:1-560. [28] Jenny H.Factors of Soil Formation:A System of Quantitative Pedology[M].New York:McGraw-Hill,1941. [29] Reiche P.Graphic representation of chemical weathering[J].Journal of Sedimentary Petrology,1943,13(2):58-68. [30] Ruxton B P.Measures of the degree of chemical weathering of rocks[J].Journal of Geology,1968,76(5):518-527. [31] Parker A.An index of weathering for silicate rocks[J].Geological Magazine,1970,107(6):501-504. [32] Coleman S M.Chemical Weathering of Basalts and Andeites,Evidence from Weathering Rinds[M].U.S.Geological Survey Professional Paper,1982. [33] Nesbitt H W,Young G M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299(5885):715-717. [34] Harnois L.The CIW index:A new chemical index of weathering[J].Sedimentary Geology,1988,55(3/4):319-322. [35] de S.Jayawardena U,Izawa E.A new chemical index of weathering for metamorphic silicate rocks in tropical regions:a study from Sri Lanka[J].Engineering Geology,1994,36(3/4):303-310. [36] Cox R,Lowe D R,Cullers R L.The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J].Geochimica et Cosmochimica Acta,1995,59(14):2919-2940. [37] Fedo C M,Nesbitt H W,Young G M.Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J].Geology,1995,23(10):921-924. [38] Voicu G,Bardoux M,Voicu D.Mineralogical norm calculations applied to tropical weathering profiles[J].Mineralogical Magazine,1997,61(405):185-196. [39] Irfan T Y.Characterization of weathered volcanic rocks in Hong Kong[J].Quarterly Journal of Engineering Geology and Hydro-geology,1999,32(4):317-348. [40] Irfan T Y.Mineralogy,fabric properties and classification of weathered granites in Hong Kong[J].Quarterly Journal of Engineering Geology and Hydrogeology,1996,29(1):5-35. [41] Price J R,Velbel M A.Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks[J].Chemical Geology,2003,202(3/4):397-416. [42] Ohta T,Arai H.Statistical empirical index of chemical weathering in igneous rocks:A new tool for evaluating the degree of weathering[J].Chemical Geology,2007,240(3/4):280-297. [43] Xiong S F,Ding Z L,Zhu Y J,et al.A~6 Ma chemical weathering history,the grain size dependence of chemical weathering intensity,and its implications for provenance change of the Chinese loess-red clay deposit[J].Quaternary Science Reviews,2010,29(15/16):1911-1922. [44] Gong Q J,Deng J,Wang C M,et al.Element behaviors due to rock weathering and its implication to geochemical anomaly recognition:A case study on Linglong biotite granite in Jiaodong peninsula,China[J].Journal of Geochemical Exploration,2013,128:14-24. [45] 徐则民,黄润秋.基于结构体的峨眉山玄武岩风化程度评价(III)——既有风化指数评价[J].中国地质,2013,40(5):1655-1665. Xu Z M,Huang R Q.The assessment of the weathering intensity of Emeishan basalt based on rock blocks(III):assessment of existing chemical weathering indices[J].Geology in China,2013,40(5):1655-1665. [46] Garzanti E,Padoan M,Setti M,et al.Provenance versus weathering control on the composition of tropical river mud (southern Africa)[J].Chemical Geology,2014,366:61-74. [47] Zhao M Y,Zheng Y F.The intensity of chemical weathering:geochemical constraints from marine detrital sediments of Triassic age in south China[J].Chemical Geology,2015,391:111-122. [48] 王卫东,汤睿,吴婕.一种玄武岩风化程度的判别方法:中国,105717149B[P].2018-08-24. Wang W D,Tang R,Wu J.A discrimination method for weathering degree of basalt:CN,105717149B[P].2018-08-24. [49] 王亚暐,吴光.成兰铁路绵竹—茂县段茂县群浅变质千枚岩风化指数研究[J].地球学报,2018,39(6):749-761. Wang Y W,Wu G.A study of phyllite weathering index of Silurian Maoxian Group along the Mianzhu-Maoxian Section of Chengdu-Lanzhou Railway[J].Acta Geoscientica Sinica,2018,39(6):749-761. [50] 吴蓓娟,彭渤,张坤,等.黑色页岩化学风化程度指标研究[J].地质学报,2016,90(4):818-832. Wu B J,Peng B,Zhang K,et al.A new chemical index of identifying the weathering degree of black shales[J].Acta Geologica Sinica,2016,90(4):818-832. [51] Duzgoren-Aydin N S,Aydin A,Malpas J.Re-assessment of chemical weathering indices:case study on pyroclastic rocks of Hong Kong[J].Engineering Geology,2002,63(1/2):99-119. [52] 梁浩,苟红光.三塘湖盆地卡拉岗组火山岩岩石化学特征及构造环境[J].西安石油大学学报:自然科学版,2009,24(5):23-28,35. Liang H,Gou H G.Petrochemical characteristics and structural environment of the volcanic rock of Kalagang Formation in Santanghu Basin[J].Journal of Xi'an Shiyou University:Natural Science Edition,2009,24(5):23-28,35. [53] 伍宏美,陈亚军,孟朋飞,等.火山岩陆上与水下喷发环境的氧化系数判别方法[J].沉积学报,2022,40(3):599-615. Wu H M,Chen Y J,Meng P F,et al.Discrimination methodof oxidation index of volcanic rock in land and underwater eruption environments[J].Acta Sedimentologica Sinica,2022,40(3):599-615. [54] 于家义,陈亚军,何伯斌,等.基于火山岩氧化系数分布特征的火山喷发环境判识——以三塘湖盆地马朗凹陷牛圈湖—牛东构造带上石炭统为例[J].地质学报,2021,95(12):3721-3738. Yu J Y,Chen Y J,He B B,et al.Identification of volcanic eruption environment based on the volcanicrock oxidation index:A case study from Upper Carboniferousigneous rocks in the Malang sag of Santanghu basin[J].Acta Geologica Sinica,2021,95(12):3721-3738. [55] Matthews D H.Altered basalts from Swallow Bank,an abyssal hill in the NE Atlantic,and from a nearby seamount[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,1971,268(1192):551-571. [56] Le Maitre R W.The chemical variability of some common igneous rocks[J].Journal of Petrology,1976,17(4):589-598. [57] 黄剑霞. 厦门港湾氧化-还原沉积环境的划分[J].台湾海峡,1987,6(1):27-32. Huang J X.Differentiation of oxidation-reduction sedimentary environment of the Xiamen Harbour[J].Journal of Oceanography in Taiwan Strait,1987,6(1):27-32. [58] 单玄龙,李吉焱,陈树民,等.陆相水下火山喷发作用及其对优质烃源岩形成的影响:以松辽盆地徐家围子断陷营城组为例[J].中国科学:地球科学,2014,44(12):2637-2644. Shan X L,Li J Y,Chen S M,et al.Subaquatic volcanic eruptions in continental facies and their influence on high quality source rocks shown by the volcanic rocks of a faulted depression in Northeast China[J].Science China Earth Sciences,2013,56(11):1926-1933. [59] 何衍鑫,鲜本忠,牛花朋,等.基于氧化系数的火山喷发环境判别:以准噶尔盆地西北缘下二叠统为例[J].高校地质学报,2017,23(4):737-749. He Y X,Xian B Z,Niu H P,et al.Discrimination of volcanic eruption environment using oxidation index:A case study of lower Permian volcanic rocks in northwestern margin of Junggar Basin[J].Geological Journal of China Universities,2017,23(4):737-749. [60] 郭靖. 黔西玄武岩地区滑坡易发性评价及玄武岩风化程度判别研究[D].长沙:中南大学,2012. Guo J.Landslide Susceptibility Assessment and Evaluation of Weathering Intensity of Basalt in Western Guizhou[D].Changsha:Central South University,2012. |
[1] |
WU Dawen, CAI Jingchen, HE Lianglun, WANG Jun, YANG Tian, HUANG Qing. New prospecting findings and potential analysis of Zhugongtang lead-zinc deposit in Northwestern Guizhou[J]. , 2023, 10(3): 25-33. |
[2] |
XUE Hongfu, ZENG Daoguo, XIANG Mingkun, MANG Shicai, ZHANG An. Characteristics of Fe-Al rock series on the top of Emeishan basalt in northwestern Guizhou Province and enrichment characteristics of its three rare elements[J]. , 2021, 8(5): 25-34. |
[3] |
LI Meng, HU Chaobin, ZHA Xianfeng, GAO Xiaofeng, LI Ting, YAO Zhiliang, ZHAO Shuai. Main progress and achievements of four 1:50 000 mineral geological survey sheets (Hongtulin Temple sheet and others) of Aquedun area of Ruoqiang County in Xinjiang Province[J]. , 2021, 8(5): 64-73. |
[4] |
QIU Tian, ZENG Lingsen, SHEN Tingting. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks[J]. , 2021, 8(4): 20-32. |
[5] |
HE Yongzhong, QIAO Weitao, ZHANG Housong, XIANG Kunpeng, HE Xiao, AN Yayun. New achievements of 1:50 000 regional geological survey of three sheets including Jingnan in Guizhou Province[J]. , 2020, 7(4): 54-59. |
[6] |
LI Jiabin, QU Niannian. Application of comprehensive geophysical methods on shale gas exploration in West Guizhou[J]. , 2018, 5(6): 97-105. |
|
|
|
|